高数证明题 难
答案:2 悬赏:20 手机版
解决时间 2021-03-17 01:11
- 提问者网友:泪痣哥哥
- 2021-03-16 16:26
高数证明题 难
最佳答案
- 五星知识达人网友:大漠
- 2021-03-16 17:05
f(x)在x=(a+b)/2处展开到2阶泰勒展式。然后两把同时积分。这两题都这么做。追问能详细点吗追答,第一题二阶导数小于0,所以得到一个不等式,c取ξ。第二题c取(a+b)/2。用这个泰勒展式两边同时对x积分,就能得到两题的答案。
全部回答
- 1楼网友:七十二街
- 2021-03-16 17:11
用f(x)的原函数F(x)
∫(a--b)f(x)dx=(b-a)f(∮)
F(b)-F(a)=(b-a)f(∮)
[F(b)-F(a)]/(b-a)=F'(x)=f(x)<=f[(a+b)/2]
希望对你有帮助追问你这个不就是微分中值定理嘛,但是怎么证明f(x)
∫(a--b)f(x)dx=(b-a)f(∮)
F(b)-F(a)=(b-a)f(∮)
[F(b)-F(a)]/(b-a)=F'(x)=f(x)<=f[(a+b)/2]
希望对你有帮助追问你这个不就是微分中值定理嘛,但是怎么证明f(x)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯