永发信息网

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果

答案:2  悬赏:80  手机版
解决时间 2021-01-23 10:32
  • 提问者网友:你挡着我发光了
  • 2021-01-23 04:01
已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<.
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=.
检验知k=是=0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的
最佳答案
  • 五星知识达人网友:蓝房子
  • 2021-01-23 05:08

全部回答
  • 1楼网友:逃夭
  • 2021-01-23 05:48
你的回答很对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯