永发信息网

二次函数的性质

答案:3  悬赏:0  手机版
解决时间 2021-04-26 20:43
  • 提问者网友:niaiwoma
  • 2021-04-26 07:58

我想知道,当y=ax2+bx=c中

当a大于0时与小于0时函数什么样,b大于0与小于0时什么样,c大于0 ,小于0时什么样????

也就是性质,在左端还是在右端,是在x轴上,还是下?是在y轴左还是右

最佳答案
  • 五星知识达人网友:千杯敬自由
  • 2021-04-26 09:15

a不变,当b不断扩大时,二次函数的对称轴不断向左移,


当a大于0, b也大于0时,图像必过第一,二,三象限


当a小于0, b也小于0时,图像必过第二,三,四象限


当a大于0, b小于0时,图像必过第一,三,四象限


当a小于0,b大于0时, 图像必过第一,三,四象限



a的符号,决定图像的开口方向

全部回答
  • 1楼网友:怀裏藏嬌
  • 2021-04-26 11:42

我擦 真是好学生...

  • 2楼网友:污到你湿
  • 2021-04-26 10:43
二次函数性质  定义与定义表达式    一般地,自变量x和因变量y之间存在如下关系:   y=ax^2+bx+c   (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)   则称y为x的二次函数。   二次函数表达式的右边通常为二次。   x是自变量,y是x的函数   二次函数的三种表达式    ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)   ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k   ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)   以上3种形式可进行如下转化:   ①一般式和顶点式的关系   对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即   h=-b/2a=(x1+x2)/2   k=(4ac-b^2)/4a   ②一般式和交点式的关系   x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)   抛物线的性质    1.抛物线是轴对称图形。对称轴为直线x = -b/2a。   对称轴与抛物线唯一的交点为抛物线的顶点P。   特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)   2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )   当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。   3.二次项系数a决定抛物线的开口方向和大小。   当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。   |a|越大,则抛物线的开口越小。   4.一次项系数b和二次项系数a共同决定对称轴的位置。   当a与b同号时(即ab>0),对称轴在y轴左;   当a与b异号时(即ab<0),对称轴在y轴右。   5.常数项c决定抛物线与y轴交点。   抛物线与y轴交于(0,c)   6.抛物线与x轴交点个数   Δ= b^2-4ac>0时,抛物线与x轴有2个交点。   Δ= b^2-4ac=0时,抛物线与x轴有1个交点。   _______   Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 乘上虚数i,整个式子除以2a)   当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变   当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)   7.定义域:R   值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)   奇偶性:非奇非偶 (当且仅当b=0时,函数解析式为f(x)=ax^2+c, 此时为偶函数)   周期性:无   解析式:   ①y=ax^2+bx+c[一般式]   ⑴a≠0   ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;   ⑶极值点:(-b/2a,(4ac-b^2)/4a);   ⑷Δ=b^2-4ac,   Δ>0,图象与x轴交于两点:   ([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);   Δ=0,图象与x轴交于一点:   (-b/2a,0);   Δ<0,图象与x轴无交点;   ②y=a(x-h)^2+t[配方式]   此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);   二次函数与一元二次方程    特别地,二次函数(以下称函数)y=ax^2+bx+c,   当y=0时,二次函数为关于x的一元二次方程(以下称方程),   即ax^2+bx+c=0   此时,函数图像与x轴有无交点即方程有无实数根。   函数与x轴交点的横坐标即为方程的根。   1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式   y=ax^2   y=a(x-h)^2   y=a(x-h)^2+k   y=ax^2+bx+c   顶点坐标   (0,0)   (h,0)   (h,k)   (-b/2a,sqrt[4ac-b^2]/4a)   对 称 轴   x=0   x=h   x=h   x=-b/2a      当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,   当h<0时,则向左平行移动|h|个单位得到.   当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;   当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;   当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;   当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;   因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.   2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).   3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.   4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:   (1)图象与y轴一定相交,交点坐标为(0,c);   (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0   (a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)   当△=0.图象与x轴只有一个交点;   当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.   5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.   顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.   6.用待定系数法求二次函数的解析式   (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:   y=ax^2+bx+c(a≠0).   (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).   (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).   7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯