三角形的周长怎么表示
答案:1 悬赏:10 手机版
解决时间 2021-03-21 05:18
- 提问者网友:却不属于对方
- 2021-03-20 16:33
三角形的周长怎么表示
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-03-20 17:04
问题一:三角形的周长公式是怎么表达的 三角形:面积S=1/2ah 周长C=abc (a为底边长度,h为底边高度;acb为各边长度)问题二:用字母表示三角形的周长。字母分别是ABC。 平行四边形:设一边为A,另一边第为B,则周长为2(A+B) 三角形:设三边长分别为A,B,C,则周长为A+B+C 梯形:设四边长分别为A,B,C,D,则周长为A+B+C+D问题三:周长为n,边长为整数的三角形的个数怎样用n来表示 你是什么教材
如果可以我帮你
初一奥数练习题一
甲多开支100元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?
4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.
5.求和:
6.证明:质数p除以30所得的余数一定不是合数.
8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
解答:
所以 x=5000(元).
所以S的末四位数字的和为1+9+9+5=24.
3.因为
a-b≥0,即a≥b.即当b
≥a>0或b≤a<0时,等式成立.
4.设上坡路程为x千米,下坡路程为y千米.依题意则
有
由②有2x+y=20, ③
由①有y=12-x.将之代入③得 2x+12-x=20.
所以 x=8(千米),于是y=4(千米).
5.第n项为
所以
6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.
7.设
由①式得(2p-1)(2q-1)=mpq,即
(4-m)pq+1=2(p+q).
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.
(1)若m=1时,有
解得p=1,q=1,与已知不符,舍去.
(2)若m=2时,有
因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
(3)若m=3时,有
解之得
故 p+q=8.
8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以
上述两式相加
另一方面,
S△PCD=S△CND+S△CNP+S△DNP.
因此只需证明
S△AND=S△CNP+S△DNP.
由于M,N分别为AC,BD的中点,所以
S△CNP=S△CPM-S△CMN
=S△APM-S△AMN
=S△ANP.
又S△DNP=S△BNP,所以
S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.
初一奥数练习题二
1.已知3x2-x=1,求6x3+7x2-5x+2000的值.
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.
4.已知方程组
的解应为
一个学生解题时把c抄错了,因此得到的解为
求a2+b2+c2的值.
5.求方程|xy|-|2x|+|y|=4的整数解.
6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本......余下全文>>
如果可以我帮你
初一奥数练习题一
甲多开支100元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?
4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.
5.求和:
6.证明:质数p除以30所得的余数一定不是合数.
8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
解答:
所以 x=5000(元).
所以S的末四位数字的和为1+9+9+5=24.
3.因为
a-b≥0,即a≥b.即当b
≥a>0或b≤a<0时,等式成立.
4.设上坡路程为x千米,下坡路程为y千米.依题意则
有
由②有2x+y=20, ③
由①有y=12-x.将之代入③得 2x+12-x=20.
所以 x=8(千米),于是y=4(千米).
5.第n项为
所以
6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.
7.设
由①式得(2p-1)(2q-1)=mpq,即
(4-m)pq+1=2(p+q).
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.
(1)若m=1时,有
解得p=1,q=1,与已知不符,舍去.
(2)若m=2时,有
因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
(3)若m=3时,有
解之得
故 p+q=8.
8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以
上述两式相加
另一方面,
S△PCD=S△CND+S△CNP+S△DNP.
因此只需证明
S△AND=S△CNP+S△DNP.
由于M,N分别为AC,BD的中点,所以
S△CNP=S△CPM-S△CMN
=S△APM-S△AMN
=S△ANP.
又S△DNP=S△BNP,所以
S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.
初一奥数练习题二
1.已知3x2-x=1,求6x3+7x2-5x+2000的值.
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.
4.已知方程组
的解应为
一个学生解题时把c抄错了,因此得到的解为
求a2+b2+c2的值.
5.求方程|xy|-|2x|+|y|=4的整数解.
6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本......余下全文>>
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯