永发信息网

在△ABC中,已知角A,B,C的对边分别为a,b,c,且bCosB+cCosC=aCosA,试判断△ABC的形状.

答案:1  悬赏:0  手机版
解决时间 2021-01-04 02:34
  • 提问者网友:流星是天使的眼泪
  • 2021-01-03 05:24
在△ABC中,已知角A,B,C的对边分别为a,b,c,且bCosB+cCosC=aCosA,试判断△ABC的形状.
最佳答案
  • 五星知识达人网友:神也偏爱
  • 2021-01-03 05:58

∵bcosB+ccosC=acosA,
由正弦定理得:sinBcosB+sinCcosC=sinAcosA,
即sin2B+sin2C=2sinAcosA,
∴2sin(B+C)cos(B-C)=2sinAcosA.
∵A+B+C=π,
∴sin(B+C)=sinA.
而sinA≠0,
∴cos(B-C)=cosA,即cos(B-C)+cos(B+C)=0,
∴2cosBcosC=0.
∵0<B<π,0<C<π,
∴B=90° 或C=90°,即△ABC是直角三角形.


试题解析:


由正弦定理与二倍角的正弦可得到sin2B+sin2C=sin2A,再利用和差化积公式与三角函数间的关系式得到2cosBcosC=0,从而可得答案.

名师点评:


本题考点: 三角形的形状判断;正弦定理;余弦定理.
考点点评: 本题考查三角形的形状判断,考查正弦定理,考查二倍角公式与和差化积公式,三角函数间的关系式,属于难题.

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯