永发信息网

哥尼斯堡七桥问题的解法?

答案:3  悬赏:70  手机版
解决时间 2021-01-31 23:00
  • 提问者网友:回忆在搜索
  • 2021-01-31 04:41
数学书上95页六年级下册
最佳答案
  • 五星知识达人网友:何以畏孤独
  • 2021-01-31 05:58
数学题类型名,最著名的是七桥问题(欧拉解答)。一笔画的概念是讨论某图形是否可以一笔画出。图形中任何端点根据所连接线条数被分为奇点、偶点。只有所有点为偶点的图形和只有两个奇点的图形可以一笔画。只有偶点的图形不限出发点,只有两个奇点必然从其中一点出发到另一点结束。在任何图形中,奇点都是成对出现的,没有奇数个奇点的图形。
  ■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
  ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。
  ■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)
後来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
全部回答
  • 1楼网友:风格不统一
  • 2021-01-31 06:39
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛a与河的左岸b、右岸c各有两座桥相连结,河中两支流间的陆地d与a、b、c各有一座桥相连结。当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题………… 这个问题无解 更多请见下面的连接! 参考资料:http://www.blog.edu.cn/user2/waruqi/archives/2005/1002370.sht
  • 2楼网友:逐風
  • 2021-01-31 06:05
18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图1所示。城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是七桥问题,一个著名的图论问题。 这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里。欧拉以深邃的洞察力很快证明了这样的走法不存在。欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,如图2所示。 于是“七桥问题”就等价于图3中所画图形的一笔画问题了。欧拉注意到,每个点如果有进去的边就必须有出来的边,从而每个点连接的边数必须有偶数 个才能完成一笔画。图3的每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次的走法。 欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯