永发信息网

方差的简化公式是怎么推导的

答案:1  悬赏:70  手机版
解决时间 2021-01-27 02:08
  • 提问者网友:饥饿走向夜
  • 2021-01-26 11:10
方差的简化公式是怎么推导的
最佳答案
  • 五星知识达人网友:轮獄道
  • 2021-01-26 12:27
一般资料书均有解释,我买的教材完全学案解释的很工整,但是比较繁琐,建议你记住公式,因为高中不予掌握其推导过程
我若要打,术语真多,你会看不懂,最好去网站找找

证明
E(ξ)=p
E(ξ^2)=0^2*q+1^2*p=p
Dξ=(Eξ^2)-[E(ξ)]^2=p-p^2=p(1-p)

第二题
E(ξ)=∑ k*P(ξ=k)=∑ k*q^(k-1)p=p*(1+2q+3q^2+...)
=p*(q+q^2+q^3...)'←求导
=p(q/1-q)'
=p/(1-q)^2
=1/p

E(ξ^2)=∑ k^2*P(ξ=k)=∑ k^2*q^(k-1)p=p*(1+4q+9q^2+...)
=p*(q+2q^2+3q^3...)'
=p*[q(1+2q+3q^2...)]'←这里可以从上面那个式子知道得:
=p*[(1-p)/p^2]'
=1/p^2
所以
Dξ=E(ξ^2)-[E(ξ)]^2=1/p^2-1/p=(1-p)/p^2=q/(p*p)

EX=np 证明如下
EX=∑kb(k;n,p)=∑k*C(k,n)p^kq^(n-k)
=np∑C(k-1,n-1)p^(k-1)q^(n-1-k+1)
=np∑C(k,n-1)p^kq^(n-1-k)
=np∑b(k;n-1,p)
=np

DX=npq 可用公式DX=EX^2-(EX)^2求出
EX^2=∑k^2b(k;n,p)
=∑[k(k-1)+k]b(k;n,p)
=∑k(k-1)b(k;n,p)+∑kb(k;n,p)
=n(n-1)p^2∑b(k;n-2,p)+np
=n(n-1)p^2+np=n^2p^2+npq
=n^2p^2+npq
所以DX=EX^2-(EX)^2=n^2p^2+npq-n^2p^2
=npq

X~b(n,p),其中n≥1,0P{X=k}=C(n,k)*p^k*(1-p)^(n-k),k=0,1,...,n.
EX=np,DX=np(1-p).
最简单的证明方法是:X可以分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:
X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.
P{Xi=0}=1-p,P(Xi=1)=p.
EXi=0*(1-p)+1*p=p,
E(Xi^2)=0^2*(1-p)+1^2*p=p,
DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).
EX=EX1+EX2+...+EXn=np,
DX=DX1+DX2+...+DXn=np(1-p).

上述均是网站搜集的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯