如图F,G是OA上两点,M,N是OB上两点,且FG=MN,三角形PFG的面积等于三角形PMN的面积.试问点P是否在角AOB的...
答案:3 悬赏:80 手机版
解决时间 2021-02-21 05:32
- 提问者网友:斑駁影
- 2021-02-20 05:39
如图F,G是OA上两点,M,N是OB上两点,且FG=MN,三角形PFG的面积等于三角形PMN的面积.试问点P是否在角AOB的平分线上?
最佳答案
- 五星知识达人网友:洎扰庸人
- 2021-02-20 07:07
作PH⊥OA,PE⊥OB,垂足分别是H,E
∵S△PFG=S△PMN
FG×PH/2=MN×PE/2
而FG=MN
∴PH=PE
∴点P是在角AOB的平分线上
∵S△PFG=S△PMN
FG×PH/2=MN×PE/2
而FG=MN
∴PH=PE
∴点P是在角AOB的平分线上
全部回答
- 1楼网友:持酒劝斜阳
- 2021-02-20 08:10
在 过p点作oa,ob的垂线,交oa,ob于c,d两点 又s△pfg=s△pmn s△pfg=1/2*(cp*fg)=s△pmn=1/2(dp*mn) 得fg=mn 即从p点到oa,ob的距离相等,满足角平分线的性质。。。
我想这应该是在除1范围内吧
- 2楼网友:夜余生
- 2021-02-20 08:03
∵⊿PFG与⊿PMN:面积相等。底也相等。
∴高应该相等。即P到OA,OB的距离相等。
∴P在∠AOB的平分线上。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯