第一问当x=1时 a0+a2…+a10=1当x=0时a0=1 当x=-1时a0-a1…+a10=3与x=1所得式子联合解得a0+a2…+a10=2又a0=1则a2+a4+a6+a8+a10=1 那么同理可得a1+a3+a5+a7+a9=-1
解:令x=0,
可得(1-0+0)^5=1=a0.
令x=1,可得(1-1+1)^5=1=a10+a9+……+a0.
∴a1+a2+a3+a4+a5+a6+a7+a8+a9+a10
=0
1.只需令x=1即得a0+a1+。。。。+a10=(1-1+1^2)^5=1.....(1)
2.再令x=-1可得a0-a1+a2-a3.....-a9+a10=(1+1+1)^5=243......(2)
(1)-(2)得2(a1+a3+a5+a7+a9)=-242,故a1+a3+a5+a7+a9=-121
3.令x=0可得a0=(1-0+0)^5=1
(1)+(2)=2(a0+a2+a4+a6+a8+a10)=244,故a2+a4+a6+a8+a10=122-1=121
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息