永发信息网

已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S22-S11的值是__

答案:1  悬赏:80  手机版
解决时间 2021-08-19 11:16
  • 提问者网友:我一贱你就笑
  • 2021-08-18 10:55
已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S22-S11的值是______.
最佳答案
  • 五星知识达人网友:空山清雨
  • 2021-08-18 11:45

根据题意,易得S22=1-5+9-13+17-21+…+81-85=(1-5)+(9-13)+(17-21)+…+(81-85)=(-4)×11=-44,
S11=1-5+9-13+17-21+…+33-37+41=(1-5)+(9-13)+(17-21)+…+(33-37)+41=(-4)×5+41=21,
则S22-S11=-44-21=-65;
故答案为-65.


试题解析:


分析数列,易得数列中每相邻2项的和为-4,可用分组求和法,则S22=1-5+9-13+17-21+…+81-85=(1-5)+(9-13)+(17-21)+…+(81-85),S11=1-5+9-13+17-21+…+33-37+41=(1-5)+(9-13)+(17-21)+…+(33-37)+41=(-4)×5+41,易得S22与S11的值,相减可得答案.

名师点评:


本题考点: 数列的求和.
考点点评: 本题考查数列的求和,注意根据不同特点的数列选择对应的方法,如本题中每相邻2项的和为-4,可用分组求和法,但解题时需注意项数为奇数与偶数的不同.

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯