分式函数的最值怎么求
答案:4 悬赏:80 手机版
解决时间 2021-03-30 13:56
- 提问者网友:爱了却不能说
- 2021-03-30 05:34
分式函数的最值怎么求
最佳答案
- 五星知识达人网友:轻雾山林
- 2021-03-30 06:16
我这里说的是高中方法 另外分式函数也只有高中以上才研究 一、利用导数解决
求导后分母恒非负,分子是二次函数(三次项消掉了),问题就容易解决了
二、不会导数的,可以利用2次方程根的分布来解决,
一般的,形如y=(ax^2+bx+c)/(ex^2+fx+g) 且x∈A,A是R的子集,可将函数化为f(y)x^2+g(y)x+u(y)=o的形式,利用二次方程根的分布,使方程在区间A上至少有一个根即可(要考虑在A上有一个和两个根的两种情况)。
对于特殊的,有简便的方法
1,当a/e=c/g(a和c可以是0,e和g不等于0)时,函数可化为y=[kx/(ax^2+bx+c)]+a/e (其中k=b-f*a/e)的形式,把kx/(ax^2+bx+c)的分子分母同时除以x(如果0∈区间A,先使x不等于0,最后再找回x=0的情况),此时分母变成ax+c/x+b的形式,利用“对钩函数”的性质即可解决问题,
2,当a/e=b/f(a和b可以等于0,e和f不等于0)时,函数可化为y=[m/(ax^2+bx+c)]+a/e (其中m=c-g*a/e),m/(ax^2+bx+c)的分母是二次函数,问题即可解决。
3,e=0时,将分母换成新元t,分子是关于t的二次函数,分子分母同除以t,变成“对钩函数”加常数的形式,即可解决。
很高兴回答楼主的问题 如有错误请见谅
求导后分母恒非负,分子是二次函数(三次项消掉了),问题就容易解决了
二、不会导数的,可以利用2次方程根的分布来解决,
一般的,形如y=(ax^2+bx+c)/(ex^2+fx+g) 且x∈A,A是R的子集,可将函数化为f(y)x^2+g(y)x+u(y)=o的形式,利用二次方程根的分布,使方程在区间A上至少有一个根即可(要考虑在A上有一个和两个根的两种情况)。
对于特殊的,有简便的方法
1,当a/e=c/g(a和c可以是0,e和g不等于0)时,函数可化为y=[kx/(ax^2+bx+c)]+a/e (其中k=b-f*a/e)的形式,把kx/(ax^2+bx+c)的分子分母同时除以x(如果0∈区间A,先使x不等于0,最后再找回x=0的情况),此时分母变成ax+c/x+b的形式,利用“对钩函数”的性质即可解决问题,
2,当a/e=b/f(a和b可以等于0,e和f不等于0)时,函数可化为y=[m/(ax^2+bx+c)]+a/e (其中m=c-g*a/e),m/(ax^2+bx+c)的分母是二次函数,问题即可解决。
3,e=0时,将分母换成新元t,分子是关于t的二次函数,分子分母同除以t,变成“对钩函数”加常数的形式,即可解决。
很高兴回答楼主的问题 如有错误请见谅
全部回答
- 1楼网友:想偏头吻你
- 2021-03-30 09:50
只需分母不为0,如:y=1/(x+3),则x+3≠0,解得x≠-3,所以定义域是{x|x≠-3}
- 2楼网友:慢性怪人
- 2021-03-30 08:12
没题。。。
- 3楼网友:像个废品
- 2021-03-30 06:44
一、可用拼凑法如y=x-4/x-2=(x-2)-2/x-2=1-(2/x-2),x=2+2/1-y如果知道x的取值范围便可求y范围 二、又如y=x-4/x^2-2=>yx^2-x+4-2y如知道x有两解,则用b^2-4ac>=0求出y范围
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯