高中数学1习题
答案:1 悬赏:60 手机版
解决时间 2021-08-11 14:03
- 提问者网友:欺烟
- 2021-08-11 02:58
高中数学1习题
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-08-11 03:14
(1/2)[f(x1)+f(x2)]=(tgx1+tgx2)/2=(1/2)(sinx1/cosx1+sinx2/cosx2)=(1/2)[(sinx1cosx2+cosx1sinx2)/(cosx1cosx2)]=sin(x1+x2)/(2cosx1cosx2)
=sin(x1+x2)/[cos(x1+x2)+cos(x1-x2)],
f[(x1+x2)/2]=tg[(x1+x2)/2]=sin(x1+x2)/[1+cos(x1+x2)],
由于x1,x2∈(0,π/2),故tgx1>0,tgx2>0,tg[(x1+x2)/2]>0,
故(1/2)[f(x1)+f(x2)]>0,f[(x1+x2)/2]>0,
(1/2)[f(x1)+f(x2)]/f[(x1+x2)/2]
={sin(x1+x2)/[cos(x1+x2)+cos(x1-x2)]}/{sin(x1+x2)/[1+cos(x1+x2)]}
=[1+cos(x1+x2)]/[cos(x1+x2)+cos(x1-x2)],
由于x1,x2∈(0,π/2),且x1≠x2,故cos(x1+x2)>0,cos(x1-x2)>0,
即1+cos(x1+x2)>0,cos(x1+x2)+cos(x1-x2)>0,
由于1>cos(x1-x2),即1+cos(x1+x2)>cos(x1+x2)+cos(x1-x2),又cos(x1+x2)+cos(x1-x2)>0,
故[1+cos(x1+x2)]/[cos(x1+x2)+cos(x1-x2)]>1,
即(1/2)[f(x1)+f(x2)]/f[(x1+x2)/2]>1,又f[(x1+x2)/2]>0,
所以(1/2)[f(x1)+f(x2)]>f[(x1+x2)/2]. 望采纳~
=sin(x1+x2)/[cos(x1+x2)+cos(x1-x2)],
f[(x1+x2)/2]=tg[(x1+x2)/2]=sin(x1+x2)/[1+cos(x1+x2)],
由于x1,x2∈(0,π/2),故tgx1>0,tgx2>0,tg[(x1+x2)/2]>0,
故(1/2)[f(x1)+f(x2)]>0,f[(x1+x2)/2]>0,
(1/2)[f(x1)+f(x2)]/f[(x1+x2)/2]
={sin(x1+x2)/[cos(x1+x2)+cos(x1-x2)]}/{sin(x1+x2)/[1+cos(x1+x2)]}
=[1+cos(x1+x2)]/[cos(x1+x2)+cos(x1-x2)],
由于x1,x2∈(0,π/2),且x1≠x2,故cos(x1+x2)>0,cos(x1-x2)>0,
即1+cos(x1+x2)>0,cos(x1+x2)+cos(x1-x2)>0,
由于1>cos(x1-x2),即1+cos(x1+x2)>cos(x1+x2)+cos(x1-x2),又cos(x1+x2)+cos(x1-x2)>0,
故[1+cos(x1+x2)]/[cos(x1+x2)+cos(x1-x2)]>1,
即(1/2)[f(x1)+f(x2)]/f[(x1+x2)/2]>1,又f[(x1+x2)/2]>0,
所以(1/2)[f(x1)+f(x2)]>f[(x1+x2)/2]. 望采纳~
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯