谁会算(n+1)^2+(n+2)^2+(n+3)^2+....+(n+n)^2 的多少。超急!!
答案:2 悬赏:60 手机版
解决时间 2021-02-05 23:03
- 提问者网友:别再叽里呱啦
- 2021-02-05 03:33
谁会算(n+1)^2+(n+2)^2+(n+3)^2+....+(n+n)^2 的多少。超急!!
最佳答案
- 五星知识达人网友:由着我着迷
- 2021-02-05 04:16
=n^2+2n+1^2 +n^2+4n+2^2+n^2+6n+3^2+…+n^2+2n^2+n^2 =n^2 ×n +2n×(1+2+…+n)+[1^2+2^2+…+ n^2] =n^3+[2n×n(1+n)/2]+ [n(n+1)(2n+1)]/6 =n^3+n^2(1+n)+[(n^2+n)(2n+1)]/6 = n^3+ n^3+ n^2+[2 n^3+ n^2+ 2n^2+ n]/6 = 2n^3+ n^2+1/3×n^3+1/2×n^2+n/6 =7/3×n^3+ 3/2 ×n^2+n/6 附: 1*2-1+2*3-2+3*4-3……+n(n+1)-n =[1*2+2*3+3*4+……+n(n+1)]-(1+2+3+……+n) =1/3(1*2*3-0*1*2)+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+……1/3[n*(n+1)(n+2)-(n-1)n(n+1)]-(1+2+3+……+n) =1/3[n(n+1)(n+2)]-[(n+1)n]/2 ==[n(n+1)(2n+1)]/6
全部回答
- 1楼网友:千夜
- 2021-02-05 04:55
2/n = 1 - (n-1)/n
3/(n+1) = 1 - (n-1)/(n+1)
4/(n+2) = 1 - (n-1)/(n+2)
原式左边=3 - (n+1)[1/n + 1/(n+1) + 1/(n+2)] = 3 - (n+1)(3n^2+6n+2)/[n(n+1)(n+2)]
原式右边=133/60=3 - 47/60
所以(n+1)(3n^2+6n+2)/[n(n+1)(n+2)] = 47/60
47是质数,那么n+1=47或3n^2+6n+2=47
1、n+1=47,n=46,代入原式,2/46+3/47+4/48=133/60,很明显不符合
2、3n^2+6n+2=47,3(n+1)^2=48,n=3(正整数解),代入原式,2/3+3/4+4/5=133/60,符合
所以题目要求的正整数解是n=3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯