如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是________,第2012个三角形离原点O最远距离的坐标是________.
如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是____
答案:2 悬赏:30 手机版
解决时间 2021-12-19 01:24
- 提问者网友:放下
- 2021-12-18 02:48
最佳答案
- 五星知识达人网友:动情书生
- 2021-12-18 03:02
(21,0) (8049,0)解析分析:先计算出AB,然后根据旋转的性质观察△OAB连续作旋转变换,得到△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,于是判断三角形2012和三角形⑤的状态一样,然后可计算出离原点O最远距离的坐标,从而得到2012个三角形的离原点O最远距离的坐标.解答:∵点A(-3,0),B(0,4),∴OB=4,OA=3,∴AB=5,∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,而2012=3×670+2,∴第⑤个三角形和第2012个三角形都和三角形②的状态一样,∴2012个三角形离原点O最远距离的点的横坐标为670×12+9=8049,纵坐标为0.第⑤三角形离原点O最远距离的点的横坐标为12+9=21,纵坐标为0.故
全部回答
- 1楼网友:轻雾山林
- 2021-12-18 03:38
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯