定义域为R的函数f(x)=(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x2+x4+x5)等于?A.0B.21g2C.
答案:2 悬赏:80 手机版
解决时间 2021-04-10 01:47
- 提问者网友:蓝琪梦莎
- 2021-04-09 16:35
定义域为R的函数f(x)=(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x2+x4+x5)等于?A.0B.21g2C.31g2D.1
最佳答案
- 五星知识达人网友:风格不统一
- 2021-04-09 17:52
C解析分析:分情况讨论,当x=2时,f(x)=1,则由f2(x)+bf(x)+c=0得1+b+c=0,求出x1=1;当x>2时,f(x)=lg(x-2),由f2(x)+bf(x)+c=0得[lg(x-2)]2+blg(x-2)-b-1=0,解得lg(x-2)=1,或lg(x-2)=b,从而求出x2和x3;当x<2时,f(x)=lg(2-x),由f2(x)+bf(x)+c=0得[lg(2-x)]2+blg(2-x)-b-1=0),解得lg(2-x)=1,或lg(2-x)=b,从而求出x4和x5,5个不同的实数解x1、x2、x3、x4、x5都求出来后,就能求出f(x1+x2+x3+x4+x5)的值.解答:当x=2时,f(x)=1,则由f2(x)+bf(x)+c=0得1+b+c=0.∴x1=2,c=-b-1.当x>2时,f(x)=lg(x-2),由f2(x)+bf(x)+c=0得[lg(x-2)]2+blg(x-2)-b-1=0,解得lg(x-2)=1,x2=12或lg(x-2)=b,x3=2+10b.当x<2时,f(x)=lg(2-x),由f2(x)+bf(x)+c=0得[lg(2-x)]2+blg(2-x)-b-1=0),解得lg(2-x)=1,x4=-8或lg(2-x)=b,x5=2-10b.∴f(x1+x2+x3+x4+x5)=f(2+12+2+10b-8+2-10b)=f(10)=lg|10-2|=lg8=3lg2.故选C.点评:这是一道比较难的对数函数综合题,解题时按照题设条件分别根据a=0、a>0和a<0三种情况求出关于x的方程f2(x)+bf(x)+c=0的5个不同的实数解x1、x2、x3、x4、x5,然后再求出f(x1+x2+x3+x4+x5)的值.
全部回答
- 1楼网友:过活
- 2021-04-09 19:12
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯