在三角形abc中,角a,b,c满足4[sin(a+c)/2]2-cos2b=7/2,求角b的度数?要过程,谢谢!
答案:1 悬赏:20 手机版
解决时间 2021-08-12 06:05
- 提问者网友:浮克旳回音
- 2021-08-11 12:47
在三角形abc中,角a,b,c满足4[sin(a+c)/2]2-cos2b=7/2,求角b的度数?要过程,谢谢!
最佳答案
- 五星知识达人网友:七十二街
- 2021-08-11 12:59
4[sin(A+C)/2]^2=4*[1-cos(A+C)]/2
=2-2cos(A+C)
=2+2cosB
所以2+2cosB-[2(cosB)^2-1]=7/2
4(cosB)^2-4cosB+1=0
cosB=1/2
B=60度
a+c=3
(a+c)=a^2+c^2+2ac=9
a^2+c^2=9-2ac
cosB=(a^2+c^2-b^2)/2ac=(9-2ac-3)/2ac=cos60=1/2
(3-ac)/ac=1/2
6-2ac=ac
ac=2
a+c=3
a和c是方程x^2-3x+2=0的根
(x-1)(x-2)=0
a>c
所以a=2,c=1
=2-2cos(A+C)
=2+2cosB
所以2+2cosB-[2(cosB)^2-1]=7/2
4(cosB)^2-4cosB+1=0
cosB=1/2
B=60度
a+c=3
(a+c)=a^2+c^2+2ac=9
a^2+c^2=9-2ac
cosB=(a^2+c^2-b^2)/2ac=(9-2ac-3)/2ac=cos60=1/2
(3-ac)/ac=1/2
6-2ac=ac
ac=2
a+c=3
a和c是方程x^2-3x+2=0的根
(x-1)(x-2)=0
a>c
所以a=2,c=1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯