永发信息网

四点共圆怎么证明

答案:2  悬赏:20  手机版
解决时间 2021-01-03 01:39
  • 提问者网友:箛茗
  • 2021-01-02 00:46
四点共圆怎么证明
最佳答案
  • 五星知识达人网友:过活
  • 2021-01-02 01:40
问题一:证明四点共圆后一般怎么证 四点共圆  证明四点共圆的基本方法证明四点共圆有下述一些基本方法:方法1  从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。方法2  把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)方法3  把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。方法4  把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理?的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(根据托勒密定理的逆定理)方法5  证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 判定与性质:圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。 如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π, 角DBC=角DAC(同弧所对的圆周角相等)。 角CBE=角ADE(外角等于内对角) △ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割线定理)EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)弦切角定理方法6同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径。问题二:如何证明四点共圆 可以去修理手机的地方刷.但是不是每个地方都可以刷的.或者去客服刷.但是一般都会比较贵.还有就是如果泰文系统很小的话.可能会不能装下中文系统.因为中文的输入法一般比其他的语言大很多问题三:四点共圆的判定和性质 四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”证明四点共圆有下述一些基本方法:
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.
方法3 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
方法4 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法5 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.
方法6 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.
上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.
判定与性质:
圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180度,
角ABC=角ADC(同弧所对的圆周角相等)。
角CBE=角D(外角等于内对角)
△ABP∽△DCP(三个内角对应相等)
AP*CP=BP*DP(相交弦定理)
AB*CD+AD*CB=AC*BD(托勒密定理)问题四:四点共圆的证明方法 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。几何描述:四边形ABCD中,∠BAC=∠BDC,则ABCD四点共圆。证明:过ABC作一个圆,明显D一定在圆上。若不在圆上,可设射线BD与圆的交点为D',那么∠BD'C=∠BAC=∠BDC,与外角定理矛盾。 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。证法见上 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)上述两个定理统称为圆幂定理的逆定理,即ABCD四个点,分别连接AB和CD,它们(或它们的延长线)交点为P,若PA*PB=PC*PD,则ABCD四点共圆。证明:连接AC,BD,∵PA*PB=PC*PD∴PA/PC=PD/PB∵∠APC=∠BPD∴△APC∽△DPB当P在AB,CD上时,由相似得∠A=∠D,且A和D在BC同侧。根据方法2可知ABCD四点共圆。当P在AB,CD的延长线上时,由相似得∠PAC=∠D,根据方法3可知ABCD四点共圆。 四边形ABCD中,若有AB*CD+AD*BC=AC*BD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。该方法可以由托勒密定理逆定理得到。托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。如图,在四边形内作△APB∽△DCB(只需要作∠PAB=∠CDB,∠PBA=∠CBD即可)由相似得∠ABP=∠DBC,∠BAP=∠BDC∴∠ABP+∠PBD=∠DBC+∠PBD即∠ABD=∠PBC又由相似得AB:BD=PB:CB=AP:CD∴AB*CD=BD*AP,△ABD∽△PBC∴AD:BD=PC:BC,即AD*BC=BD*PC两个等式相加,得AB*CD+AD*BC=BD*(PA+PC)≥BD*AC,等号成立的充要条件是APC三点共线而APC共线意味着∠BAP=∠BAC,而∠BAP=∠BDC,∴∠BAC=∠BDC根据方法2,ABCD四点共圆 西姆松定理逆定理:若一点在一三角形三边上的射影共线,则该点在三角形外接圆上。设有一△ABC,P是平面内与ABC不同的点,过P作三边垂线,垂足分别为L,M,N,若L,M,N共线,则P在△ABC的外接圆上。如图,PM⊥AC,PN⊥AB,PL⊥BC,且L,N,M在一条线上。连接PB,PC,∵∠PLB+∠PNB=90°+90°=180°∴PLBN四点共圆∴∠PLN=∠PBN,即∠PLM=∠PBA同理,∠PLM=∠PCM,即∠PLM=∠PCA=∠PBA根据方法2,P在△ABC外接圆上问题五:如何证明四点共圆或三点共线 1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
全部回答
  • 1楼网友:北方的南先生
  • 2021-01-02 02:55
和我的回答一样,看来我也对了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯