变限积分函数求导公式,帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!
答案:1 悬赏:50 手机版
解决时间 2021-08-24 15:50
- 提问者网友:爱唱彩虹
- 2021-08-24 07:21
变限积分函数求导公式,帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!
最佳答案
- 五星知识达人网友:动情书生
- 2021-08-24 08:01
基本函数的导函数
C'=0(C为常数)
(x^n)'=nx^(n-1) (n∈R)
(sinx)'=cosx
(cosx)'=-sinx
(e^x)'=e^x
(a^x)'=(a^x)*lna(a>0且a≠1)
[logax)]' = 1/(x·lna)(a>0且a≠1且x>0)
[lnx]'= 1/x
和差积商函数的导函数
[f(x) + g(x)]' = f'(x) + g'(x)
[f(x) - g(x)]' = f'(x) - g'(x)
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]
复合函数的导函数
设 y=u(t) ,t=v(x),则 y'(x) = u'(t)v'(x) = u'[v(x)] v'(x)
例 :y = t^2 ,t = sinx ,则y'(x) = 2t * cosx = 2sinx*cosx = sin2x
C'=0(C为常数)
(x^n)'=nx^(n-1) (n∈R)
(sinx)'=cosx
(cosx)'=-sinx
(e^x)'=e^x
(a^x)'=(a^x)*lna(a>0且a≠1)
[logax)]' = 1/(x·lna)(a>0且a≠1且x>0)
[lnx]'= 1/x
和差积商函数的导函数
[f(x) + g(x)]' = f'(x) + g'(x)
[f(x) - g(x)]' = f'(x) - g'(x)
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]
复合函数的导函数
设 y=u(t) ,t=v(x),则 y'(x) = u'(t)v'(x) = u'[v(x)] v'(x)
例 :y = t^2 ,t = sinx ,则y'(x) = 2t * cosx = 2sinx*cosx = sin2x
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯