永发信息网

如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A处,则AE、AB、BF之间的关系是________.

答案:2  悬赏:70  手机版
解决时间 2021-01-23 02:03
  • 提问者网友:藍了天白赴美
  • 2021-01-22 15:15
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A处,则AE、AB、BF之间的关系是________.
最佳答案
  • 五星知识达人网友:雪起风沙痕
  • 2021-01-22 16:37
AE2+AB2=BF2解析分析:由折叠的性质知:BF=B′F,且∠B′FE=∠BFE,由AD∥BC可知∠B′EF=∠BFE,通过等量代换可证得B′E=B′F=BF,进而可在Rt△A′B′E中,利用勾股定理得到所求线段的关系.解答:由折叠的性质知:A′B′=AB,AE=A′E,BF=B′F,∠A′=∠A=90°,∠B′FE=∠BFE;
又∵AD∥BC,∴∠BFE=∠B′EF,
∴∠B′EF=∠BFE=∠B′FE,即B′E=B′F=BF;
在Rt△A′B′E中,由勾股定理得:A′B′2+A′E2=B′E2,
即:AE2+AB2=BF2.点评:此题考查图形的翻折变换,涉及到矩形的性质、平行线的性质以及勾股定理的综合应用,难度不大.
全部回答
  • 1楼网友:胯下狙击手
  • 2021-01-22 18:07
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯