永发信息网

如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.(1)求证:OM=ON;(2)设正方形OEFG的对角线OF与边A

答案:2  悬赏:0  手机版
解决时间 2021-04-12 20:29
  • 提问者网友:不要迷恋哥
  • 2021-04-11 21:01
如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形OEFG的对角线OF与边AB相交于点P,连接PM.若正方形ABCD的边长为12,且PM=5,试求AM的长.
最佳答案
  • 五星知识达人网友:野味小生
  • 2021-04-11 21:55
(1)∵O为正方形ABCD的对角线的交点,
∴∠OAM=∠OBN=45°,OA=OB,∠AOB=90°.(1分)
又∵∠EOG=90°,
∴∠EOG-∠AON=∠AOB-∠AON,即∠AOM=∠BON.(2分)
在△AOM和△BON中,
∵∠OAM=∠OBN,OA=OB,∠AOM=∠BON,
∴△AOM≌△BON.(ASA)(3分)
∴OM=ON.(4分)

(2)∵OF为正方形OEFG的对角线,
∴∠POM=∠PON=45°.
又∵OM=ON,OP=OP,
∴△POM≌△PON.(SAS)(5分)
∴PM=PN.
又∵PM=5,
∴PN=5.(6分)
∵△AOM≌△BON,
∴BN=AM.(7分)
设AM=x,则AP=AB-PN-BN=12-5-x=7-x.(8分)
在Rt△AMP中,
∵AM2+AP2=PM2,
∴x2+(7-x)2=25.(9分)
化简得x2-7x+12=0.
解这个方程得x1=3,x2=4.
∴AM的长为3或4.(10分)解析分析:(1)利用旋转的性质得到∠OAM=∠OBN,OA=OB,∠AOM=∠BON,从而证明△AOM≌△BON,问题得证;(2)利用上题证得的全等三角形可以得到BN=AM,设AM=x,然后表示出AP,在直角三角形AMP中利用勾股定理列出方程求解即可.点评:本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.
全部回答
  • 1楼网友:三千妖杀
  • 2021-04-11 22:35
谢谢解答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯