永发信息网

数学一元一次方程中追击问题(两辆车告诉他们的速度和时间,求追及时间)明天就考试了

答案:4  悬赏:40  手机版
解决时间 2021-03-10 04:01
  • 提问者网友:玫瑰园
  • 2021-03-09 03:57
给我一道题和他们的答案,过程,讲解???十万火急啊??~~~~(>_<)~~~~
最佳答案
  • 五星知识达人网友:青灯有味
  • 2021-03-09 04:29
速度差×追及时间=追及路程
追及路程÷速度差=追及时间(同向追及)
速度差=追及路程÷追及时间
甲经过路程—乙经过路程=追及时相差的路程相遇:  相遇路程÷速度和=相遇时间
速度和×相遇时间=相遇路程
相遇路程÷相遇时间=速度和
甲走的路程+乙走的路程=总路程例题:  例:甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑6米,乙每秒跑4米,
第二次追上乙时,甲跑了几圈?
基本等量关系:追及时间×速度差=追及距离
本题速度差为:6-4=2 (米/每秒)。
甲第一次追上乙后,追及距离是环形跑道的周长300米。
第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类似于求解第一次追及的问题。
甲第一次追上乙的时间是:300÷2=150(秒)
甲第一次追上乙跑了:6×150=900(米)
这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘二即可,得
甲第二次追上乙共跑了:900+900=1800(米)
那么甲跑了1800÷300=6(圈)

解追及问题的常规方法是根据位移相等来列方程,匀变速直线运动位移公式是一个一元二次方程,所以解直线运动问题中常要用到二次三项式(y=ax2+bx+c)的性质和判别式(△=b²-4ac)。
另外,在有两个(或几个)物体运动时,常取其中一个物体为参照物,即让它变为“静止”的,只有另一个(或另几个)物体在运动。这样,研究过程就简化了,所以追及问题也常变换参照物的方法来解。这时先要确定其他物体相对参照物的初速度和相对它的加速度,才能确定其他物体的运动情况
追及问题,比较实用的应该是方程,这种可以解决所有的问题,我想,算数不是解决追及问题的好方法,应该学会用方程来解。

1.A、B、C三个站点位于同一直线上,B站到A、Cl两站的距离相等,甲、乙二人分别从A、C两站同时出发相向而行,甲在距离B站100米处与乙相遇,相遇后两人继续前进,甲到达C站后立即返回,经过B站300米又追上乙。问A、C两站的距离是多少米?
2.高速公路上,一辆长4m、速度为110km/h的轿车准备超越一辆长12m、速度为100km/h的卡车。估计轿车从开始追及到完全超越卡车,大约需要多少小时?
3.小王、小李同时从学校去公园,小王每小时行10km,小李有事晚出发,为了能和小王同时到达,小李每小时用12km的速度前行,但小王在行进到路程的2/3时,速度每小时减慢了2km,结果在离公园2km处被小李追上,求学校到公园的距离及小李晚出发了多长时间?
4. 甲、乙、丙三人每分钟的速度分别为30M、40M、50M,甲、乙在A地同时同向出发,丙从B地同时去追赶甲、乙,并追上甲以后又经过十分钟才追上乙,A、B两地相距多少米?
5.一条街上,一个骑车人与一个步行人同向而行,骑车人得速度是步行人的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分发一辆公共汽车?
6.列车从甲站到乙站正常行驶速度为60km/h。某次列车从甲站出发时晚点8分钟,司机把车速提高到80km/h,结果提前2分钟到达驿站。
全部回答
  • 1楼网友:刀戟声无边
  • 2021-03-09 07:22
上面的人说得太详细了,呵呵。 从你“(两辆车告诉他们的速度和时间,求追及时间)”来看,你要求的只是“追及时间”。 追及时间=相差距离÷速度差 相差距离是两车之间的距离,要注意车头追到车尾、车头追到车头、车尾追到车头的细小差别。 其他方面别人说得很详细了,我就不多说了。
  • 2楼网友:胯下狙击手
  • 2021-03-09 06:01
速度差×追及时间=追及路程 追及路程÷速度差=追及时间(同向追及) 速度差=追及路程÷追及时间 甲经过路程—乙经过路程=追及时相差的路程相遇:  相遇路程÷速度和=相遇时间 速度和×相遇时间=相遇路程 相遇路程÷相遇时间=速度和 甲走的路程+乙走的路程=总路程例题:  例:甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑6米,乙每秒跑4米, 第二次追上乙时,甲跑了几圈? 基本等量关系:追及时间×速度差=追及距离 本题速度差为:6-4=2 (米/每秒)。 甲第一次追上乙后,追及距离是环形跑道的周长300米。 第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类似于求解第一次追及的问题。 甲第一次追上乙的时间是:300÷2=150(秒) 甲第一次追上乙跑了:6×150=900(米) 这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘二即可,得 甲第二次追上乙共跑了:900+900=1800(米) 那么甲跑了1800÷300=6(圈)
  • 3楼网友:空山清雨
  • 2021-03-09 04:47
速度差×追及时间=追及路程 追及路程÷速度差=追及时间(同向追及) 速度差=追及路程÷追及时间 甲经过路程—乙经过路程=追及时相差的路程相遇:  相遇路程÷速度和=相遇时间 速度和×相遇时间=相遇路程 相遇路程÷相遇时间=速度和 甲走的路程+乙走的路程=总路程例题:  例:甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑6米,乙每秒跑4米, 第二次追上乙时,甲跑了几圈? 基本等量关系:追及时间×速度差=追及距离 本题速度差为:6-4=2 (米/每秒)。 甲第一次追上乙后,追及距离是环形跑道的周长300米。 第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类似于求解第一次追及的问题。 甲第一次追上乙的时间是:300÷2=150(秒) 甲第一次追上乙跑了:6×150=900(米) 这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘二即可,得 甲第二次追上乙共跑了:900+900=1800(米) 那么甲跑了1800÷300=6(圈) 解追及问题的常规方法是根据位移相等来列方程,匀变速直线运动位移公式是一个一元二次方程,所以解直线运动问题中常要用到二次三项式(y=ax2+bx+c)的性质和判别式(△=b²-4ac)。 另外,在有两个(或几个)物体运动时,常取其中一个物体为参照物,即让它变为“静止”的,只有另一个(或另几个)物体在运动。这样,研究过程就简化了,所以追及问题也常变换参照物的方法来解。这时先要确定其他物体相对参照物的初速度和相对它的加速度,才能确定其他物体的运动情况 追及问题,比较实用的应该是方程,这种可以解决所有的问题,我想,算数不是解决追及问题的好方法,应该学会用方程来解。 1.a、b、c三个站点位于同一直线上,b站到a、cl两站的距离相等,甲、乙二人分别从a、c两站同时出发相向而行,甲在距离b站100米处与乙相遇,相遇后两人继续前进,甲到达c站后立即返回,经过b站300米又追上乙。问a、c两站的距离是多少米? 2.高速公路上,一辆长4m、速度为110km/h的轿车准备超越一辆长12m、速度为100km/h的卡车。估计轿车从开始追及到完全超越卡车,大约需要多少小时? 3.小王、小李同时从学校去公园,小王每小时行10km,小李有事晚出发,为了能和小王同时到达,小李每小时用12km的速度前行,但小王在行进到路程的2/3时,速度每小时减慢了2km,结果在离公园2km处被小李追上,求学校到公园的距离及小李晚出发了多长时间? 4. 甲、乙、丙三人每分钟的速度分别为30m、40m、50m,甲、乙在a地同时同向出发,丙从b地同时去追赶甲、乙,并追上甲以后又经过十分钟才追上乙,a、b两地相距多少米? 5.一条街上,一个骑车人与一个步行人同向而行,骑车人得速度是步行人的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分发一辆公共汽车? 6.列车从甲站到乙站正常行驶速度为60km/h。某次列车从甲站出发时晚点8分钟,司机把车速提高到80km/h,结果提前2分钟到达驿站。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯