永发信息网

将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;(2)若1号球不在甲盒内,2号球不在乙盒内,

答案:2  悬赏:10  手机版
解决时间 2021-03-22 20:47
  • 提问者网友:骨子里的高雅
  • 2021-03-22 04:28
将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.
(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有多少种不同放法.
最佳答案
  • 五星知识达人网友:神的生死簿
  • 2021-03-22 05:18
解:(1)由题意知三只盒子都不空,且3号球必须在乙盒内,
其余的小球有两种不同的分法,可以分成1,1,1,或者1,2,这两种情况是互斥的,
当三个球在三个盒子中全排列有A33=6种结果,
当三个球分成两份,在甲和丙盒子中排列,共有C32A22=6种结果
∴由分类计数原理知共有6+6=12种结果.
(2)由题意知本题是一个分步计数问题,
∵首先1号球不放在甲盒中,有2种放法,
2号球不在乙盒,有2种结果,
3号球有3种结果
4号球有3种结果,
∴根据分步计数原理知共有2×2×3×3=36种结果,
答:(1)若三只盒子都不空,且3号球必须在乙盒内有12种不同的放法;
(2)若1号球不在甲盒内,2号球不在乙盒内,有36种不同放法.解析分析:(1)1,2,4号的小球有两种不同的分法,可以分成1,1,1,或者1,2,这两种情况是互斥的,当三个球在三个盒子中全排列有A33种结果,当三个球分成两份,在甲和丙盒子中排列,共有C32A22种结果,相加得到结果.(2)由题意知本题是一个分步计数问题,首先1号球不放在甲盒中,有2种放法,2号球不在乙盒,有2种结果,3和4号球有3种结果,相乘得到结果.点评:本题考查排列组合的实际应用,本题解题的关键是注意题目中有限制条件的元素的排法,先排列有限制条件的,本题是一个中档题目
全部回答
  • 1楼网友:不如潦草
  • 2021-03-22 06:06
这个问题我还想问问老师呢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯