永发信息网

已知函数f(x)为R上偶函数,且f(x)在[0,+∞)上的单调递增,记m=f(-1),n=f(a2+2a+3),则m与n的大小关系是________.

答案:2  悬赏:70  手机版
解决时间 2021-03-12 03:28
  • 提问者网友:半生酒醒
  • 2021-03-11 13:50
已知函数f(x)为R上偶函数,且f(x)在[0,+∞)上的单调递增,记m=f(-1),n=f(a2+2a+3),则m与n的大小关系是________.
最佳答案
  • 五星知识达人网友:痴妹与他
  • 2021-02-02 01:59
m<n解析分析:首先根据函数f(x)为R上偶函数,可知f(-1)=f(1),又知n=f(a2+2a+3)=f[(x+1)2+2],再根据函数的单调性进行判断大小.解答:∵函数f(x)为R上偶函数,
∴f(-1)=f(1),
又知n=f(a2+2a+3)=f[(x+1)2+2],
∵f(x)在[0,+∞)上的单调递增,
根据1<(x+1)2+3,
∴f(a2+2a+3)>f(1)=f(-1),
∴m<n,
全部回答
  • 1楼网友:上分大魔王
  • 2020-11-23 20:15
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯