基于内容的图像检索的技术概述
答案:1 悬赏:70 手机版
解决时间 2021-11-13 10:31
- 提问者网友:回忆在搜索
- 2021-11-12 23:11
基于内容的图像检索的技术概述
最佳答案
- 五星知识达人网友:山君与见山
- 2021-11-13 00:29
CBIR的核心是使用图像的可视特征对图像进行检索。本质上讲,它是一种近似匹配技术,融合了计算机视觉、图像处理、图像理解和数据库等多个领域的技术成果,其中的特征提取和索引的建立可由计算机自动完成,避免了人工描述的主观性。用户检索的过程一般是提供一个样例图像(Queryby Example) 或描绘一幅草图(Queryby Sketch) ,系统抽取该查询图像的特征,然后与数据库中的特征进行比较,并将与查询特征相似的图像返回给用户。
CBIR 的实现依赖于两个关键技术的解决:图像特征提取和匹配。
图像特征提取分为两类:①低层视觉,其内容主要包括颜色、形状、纹理等;②语义内容,它包含高层的概念级反应(如“海上升明月”),需要对物体进行识别和解释,往往要借助人类的知识推理。由于目前计算机视觉和图像理解的发展水平所限,使得CBIR还无法真正支持基于语义的图像检索,所以目前研究得较多也比较成熟的检索算法大部分是基于图像的低层特征的,即利用图像的颜色、纹理、形状等特征来检索。 提取后的图像特征数据需要经过索引、降维等处理。首先,图像由特征向量表示,而这些特征向量一般都是高维向量, 在庞大的图像数据库中,对高维向量进行顺序比较的过程是相当费时的。在实际应用过程中, 为了让基于CBIR的图像检索系统能够真正适合大型的图像数据库, 提高检索效率,尽可能减少查询时的特征矢量比较时间,往往将降维技术和多维索引技术结合起来。
图像相似度是指人类对图像内容认识上(即语义)的差异,导致通过计算查询样图和候选图像之间在视觉特征上存在距离。如果这个距离满足一定条件,我们则可以说这两图像相似度匹配。当然,如果能将语义特征和视觉特征结合起来, 相似度匹配程度会更高,检索结果会更让人满意,但这是目前研究的一大难题。
CBIR 的实现依赖于两个关键技术的解决:图像特征提取和匹配。
图像特征提取分为两类:①低层视觉,其内容主要包括颜色、形状、纹理等;②语义内容,它包含高层的概念级反应(如“海上升明月”),需要对物体进行识别和解释,往往要借助人类的知识推理。由于目前计算机视觉和图像理解的发展水平所限,使得CBIR还无法真正支持基于语义的图像检索,所以目前研究得较多也比较成熟的检索算法大部分是基于图像的低层特征的,即利用图像的颜色、纹理、形状等特征来检索。 提取后的图像特征数据需要经过索引、降维等处理。首先,图像由特征向量表示,而这些特征向量一般都是高维向量, 在庞大的图像数据库中,对高维向量进行顺序比较的过程是相当费时的。在实际应用过程中, 为了让基于CBIR的图像检索系统能够真正适合大型的图像数据库, 提高检索效率,尽可能减少查询时的特征矢量比较时间,往往将降维技术和多维索引技术结合起来。
图像相似度是指人类对图像内容认识上(即语义)的差异,导致通过计算查询样图和候选图像之间在视觉特征上存在距离。如果这个距离满足一定条件,我们则可以说这两图像相似度匹配。当然,如果能将语义特征和视觉特征结合起来, 相似度匹配程度会更高,检索结果会更让人满意,但这是目前研究的一大难题。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯