永发信息网

若{a,b,c}是空间的一个基底.试判断{a+b,b+c,c+a}能否作为该空间的一个基底

答案:1  悬赏:0  手机版
解决时间 2021-08-23 23:49
  • 提问者网友:美人性情
  • 2021-08-23 02:39
若{a,b,c}是空间的一个基底.试判断{a+b,b+c,c+a}能否作为该空间的一个基底
解释中为什么∴a,b,c不共面∴1=μ,1=λ,0=λ+μ,
假设a+b,b+c,c+a共面,则存在实数λ、μ,使得a+b=λ(b+c)+μ(c+a)
∴a+b=λb+μa+(λ+μ)c
∵{a,b,c}为基底
∴a,b,c不共面
∴1=μ,1=λ,0=λ+μ
此方程组无解
∴a+b,b+c,c+a不共面
最佳答案
  • 五星知识达人网友:北城痞子
  • 2021-08-23 03:29

1、a,b,c为基底,所以a,b,c不共面.因为只有不共面的三个向量才能做基底.
2、如果a+b,b+c,c+a共面,则存在实数λ、μ,使得a+b=λ(b+c)+μ(c+a)
因为解不出λ、μ,所以不存在λ、μ使得a+b=λ(b+c)+μ(c+a),所以a+b,b+c,c+a不共面
再问: 我是想问是怎么解出1=μ,1=λ,0=λ+μ这个答案的!!
再答: a+b=λb+μa+(λ+μ)c移项可得 (1-μ)a+(1-λ)b-(λ+μ)c=0 因为a,b,c可作为基地,不相关,所以每一项分别等于0,所以每一项的系数等于0,所以 1-μ=0 1-λ=0 λ+μ=0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯