一道数学题:若动圆M恒过定点B(-2,0),而且和定圆C:(x-2)的平方加y的平方外切,则动圆圆心M的轨迹是怎样判断?
答案:1 悬赏:30 手机版
解决时间 2021-05-11 01:36
- 提问者网友:缘字诀
- 2021-05-10 11:59
可以写具体的过程?
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-05-10 12:29
M(m,n)
过n
所以r=√[(m+2)²+n²]
圆心距d=√[(m-2)²+n²]
若外切
则d=r1+r2
√[(m-2)²+n²]=2+√[(m+2)²+n²]
√[(m-2)²+n²]-√[(m+2)²+n²]=2
到(2,0)距离减去到(-2,0)距离是2
所以是双曲线
c=2,2a=2
a=1
b²=3
所以x²-y²/3=1
到(2,0)远,是左支
若内切
则d=r1-r2
√[(m-2)²+n²]=√[(m+2)²+n²]-2
√[(m+2)²+n²]-√[(m-2)²+n²]=2
和上面一样
但到(-2,0)远,是右支
所以是x²-y²/3=1
过n
所以r=√[(m+2)²+n²]
圆心距d=√[(m-2)²+n²]
若外切
则d=r1+r2
√[(m-2)²+n²]=2+√[(m+2)²+n²]
√[(m-2)²+n²]-√[(m+2)²+n²]=2
到(2,0)距离减去到(-2,0)距离是2
所以是双曲线
c=2,2a=2
a=1
b²=3
所以x²-y²/3=1
到(2,0)远,是左支
若内切
则d=r1-r2
√[(m-2)²+n²]=√[(m+2)²+n²]-2
√[(m+2)²+n²]-√[(m-2)²+n²]=2
和上面一样
但到(-2,0)远,是右支
所以是x²-y²/3=1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯