三角形ABC中,角C=90°,M是BC中点,若sin∠BAM=1/3,求sin∠BAC
答案:2 悬赏:70 手机版
解决时间 2021-04-24 02:51
- 提问者网友:十年饮冰
- 2021-04-23 13:30
三角形ABC中,角C=90°,M是BC中点,若sin∠BAM=1/3,求sin∠BAC
最佳答案
- 五星知识达人网友:胯下狙击手
- 2021-04-23 14:11
设AC=a BC=b 作CD垂直AB ,ME垂直AB
CM=BM=b/2
AM=根号(a^2+b^2/4)
CD=2ME
sinBAM=ME/AM =1/3 ME=AM/3
CD=ab/根号(a^2+b^2)
1/2ab/根号(a^2+b^2)=根号(a^2+b^2/4) /3
9a^2b^2=4(a^2+b^2)(a^2+b^2/4)
9a^2b^2=(a^2+b^2)(4a^2+b^2)=4a^4+5a^2b^2+b^4
4a^4-4a^2b^2+b^4=0
(2a^2-b^2)^2=0
2a^2=b^2
所以sinBAC=CD/AC=ab/a根号(a^2+b^2) =b/根号(a^2+b^2)=根号6 /3
CM=BM=b/2
AM=根号(a^2+b^2/4)
CD=2ME
sinBAM=ME/AM =1/3 ME=AM/3
CD=ab/根号(a^2+b^2)
1/2ab/根号(a^2+b^2)=根号(a^2+b^2/4) /3
9a^2b^2=4(a^2+b^2)(a^2+b^2/4)
9a^2b^2=(a^2+b^2)(4a^2+b^2)=4a^4+5a^2b^2+b^4
4a^4-4a^2b^2+b^4=0
(2a^2-b^2)^2=0
2a^2=b^2
所以sinBAC=CD/AC=ab/a根号(a^2+b^2) =b/根号(a^2+b^2)=根号6 /3
全部回答
- 1楼网友:第幾種人
- 2021-04-23 15:45
作bd垂直于am的延长线并交于d
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯