已知f(x)=log 2 (x+1)+alog2(1-x)是奇函数,求证f(x1)+f(x2)=f(x1+x2/1+x1x2)
- 提问者网友:我们很暧昧
- 2021-08-20 18:18
- 五星知识达人网友:duile
- 2021-08-20 18:43
f(x)=log2(x+1)+alog2(1-x)是奇函数
则-1<x<1,且f(-x)+f(x)=0
∴log2(x+1)+alog2(1-x)+[log2(-x+1)+alog2(1+x)]=0
∴a=-1
f(x)=log2(x+1)+log2(1-x)
则f(x1)=log2(x1+1)-log2(1-x1)=log2[(x1+1)/(1-x1)]
同理,f(x2)=log2[(x2+1)/(1-x2)]
∴f(x1)+f(x2)=log2[(x1+1)(x2+1)/(1-x1)(1-x2)=log2[(x1x2+x1+x2+1)/(x1x2-x1-x2+1)]
∴f[(x1+x2)/(1+x1x2)]=log2{[(x1+x2)/(1+x1x2)+1]/[1-(x1+x2)/(1+x1x2)]}
=log2[(1+x1x2+x1+x2)/(1+x1x2-x1-x2)]
∴f(x1)+f(x2)=f[(x1+x2)/(1+x1x2)]
- 1楼网友:鸠书
- 2021-08-20 20:04
证明:由f(x)=log 2 (x+1)+alog2(1-x)是奇函数,有f(-x)=-f(x),
即log 2 (-x+1)+alog2(1+x)=-log 2 (x+1)-alog2(1-x)
整理,得log 2 (1-x)+alog2(1+x)+log 2 (x+1)+alog2(1-x)=0
即(1+a)[log 2 (1-x)+log2(1+x)]=0
所以a=-1
即f(x)=log(1+x)/(1-x)(注:为避免混淆,对数的底2省略没写出,下同)
f(x1)+f(x2)=log(1+x1)/(1-x1)+log(1+x2)/1-x2)
=log[(1+x1)(1+x2)]/[(1-x1)(1-x2]=log(1+x1+x2+x1x2)/(1-x1-x2+x1x2)
而f[(x1+x2)/(1+x1x2)]=log[1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)]
=log[1+x1+x2+x1x2]/[1-x1-x2+x1x2]
故有f(x1)+f(x2)=f(x1+x2/1+x1x2)
f[(x1+x2)/(1+x1x2)]=f[1/(1+0.25)]=f(4/5)=log(9/5)-log(1/5)=log9=