【求导数】什么是导数,如何求导数什么是导数?
答案:2 悬赏:40 手机版
解决时间 2021-01-25 06:04
- 提问者网友:遮云壑
- 2021-01-25 02:32
【求导数】什么是导数,如何求导数什么是导数?
最佳答案
- 五星知识达人网友:过活
- 2021-01-25 03:47
【答案】 导数
[编辑本段]
导数(derivative)亦名微商,由速度问题和切线问题抽象出来的数学概念.又称变化率.如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为s=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)/t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)/t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度.一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率).若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数.函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率.
导数是微积分中的重要概念.导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.可导的函数一定连续.不连续的函数一定不可导.
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示.如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性.
求导数的方法
[编辑本段]
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)-f(x0)
② 求平均变化率
③ 取极限,得导数.
(2)几种常见函数的导数公式:
① C'=0(C为常数);
② (x^n)'=nx^(n-1) (n∈Q);
③ (sinx)'=cosx;
④ (cosx)'=-sinx;
⑤ (e^x)'=e^x;
⑥ (a^x)'=a^xIna (ln为自然对数)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则.
导数是微积分的一个重要的支柱!
导数公式及证明
[编辑本段]
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0.
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明.
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β).
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna.
可以知道,当a=e时有y=e^x y'=e^x.
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x.
可以知道,当a=e时有y=lnx y'=1/x.
这时可以进行y=x^n y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1).
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx.
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果.
对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法.
y=x^n
由指数函数定义可知,y>0
等式两边取自然对数
ln y=n*ln x
等式两边对x求导,注意y是y对x的复合函数
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
幂函数同理可证
[编辑本段]
导数(derivative)亦名微商,由速度问题和切线问题抽象出来的数学概念.又称变化率.如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为s=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)/t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)/t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度.一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率).若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数.函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率.
导数是微积分中的重要概念.导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.可导的函数一定连续.不连续的函数一定不可导.
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示.如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性.
求导数的方法
[编辑本段]
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)-f(x0)
② 求平均变化率
③ 取极限,得导数.
(2)几种常见函数的导数公式:
① C'=0(C为常数);
② (x^n)'=nx^(n-1) (n∈Q);
③ (sinx)'=cosx;
④ (cosx)'=-sinx;
⑤ (e^x)'=e^x;
⑥ (a^x)'=a^xIna (ln为自然对数)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则.
导数是微积分的一个重要的支柱!
导数公式及证明
[编辑本段]
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0.
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明.
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β).
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna.
可以知道,当a=e时有y=e^x y'=e^x.
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x.
可以知道,当a=e时有y=lnx y'=1/x.
这时可以进行y=x^n y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1).
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx.
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果.
对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法.
y=x^n
由指数函数定义可知,y>0
等式两边取自然对数
ln y=n*ln x
等式两边对x求导,注意y是y对x的复合函数
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
幂函数同理可证
全部回答
- 1楼网友:毛毛
- 2021-01-25 04:41
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯