【二阶导数大于零】二阶导数大于0为什么的图形为什么是凸的请简明的解释
答案:2 悬赏:30 手机版
解决时间 2021-02-27 03:12
- 提问者网友:绫月
- 2021-02-26 19:37
【二阶导数大于零】二阶导数大于0为什么的图形为什么是凸的请简明的解释
最佳答案
- 五星知识达人网友:胯下狙击手
- 2021-02-26 20:28
【答案】 二阶导数大于0的曲线为什么是凸的?
较严格的提法是:二阶导数大于0的曲线是向下凸的,或者说是向上凹的.曲线的弦与弦所夹的弧围成的弓形是凸形.
如果这么定义曲线的凸性:曲线的任意弦不与曲线相交于第三点.那么楼主提法在这个意义上就是正确的.
这个事实直观上可以这么理二阶导数反映的是一阶导数的变化率,其恒大于0说明一阶导数是恒增的,即曲线的切线斜率是递增的,也就是说曲线的切线沿曲线从左到右滑动时呈单向(逆时针)旋转,没有摆动现象,所以曲线的弓形是凸形.
简单的证明(反证法):如果曲线的弦AB与曲线相交于不同于弦端A、B的C点,那么根据罗尔定理,在弧AC与弧BC上各存在一条与弦平行的切线,这与切线斜率单调递增相矛盾.
较严格的提法是:二阶导数大于0的曲线是向下凸的,或者说是向上凹的.曲线的弦与弦所夹的弧围成的弓形是凸形.
如果这么定义曲线的凸性:曲线的任意弦不与曲线相交于第三点.那么楼主提法在这个意义上就是正确的.
这个事实直观上可以这么理二阶导数反映的是一阶导数的变化率,其恒大于0说明一阶导数是恒增的,即曲线的切线斜率是递增的,也就是说曲线的切线沿曲线从左到右滑动时呈单向(逆时针)旋转,没有摆动现象,所以曲线的弓形是凸形.
简单的证明(反证法):如果曲线的弦AB与曲线相交于不同于弦端A、B的C点,那么根据罗尔定理,在弧AC与弧BC上各存在一条与弦平行的切线,这与切线斜率单调递增相矛盾.
全部回答
- 1楼网友:杯酒困英雄
- 2021-02-26 22:07
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯