1/2+1/6+1/12+1/20········1/132=?
谢了
1/2+1/6+1/12+1/20········1/132=?
谢了
原式=1/1*2+1/2*3+1/3*4+……+1/11*12
=1-1/2+1/2-1/3+1/3-1/4+……+1/11-1/12
中间正负抵消
=1-1/12
=11/12
an=1/(n(n+1))
Sn=1-1/2+1/2-1/3+...+(1/n)-(1/(n+1))=n/(n+1)(裂项求和法)
所以S132=132/133
1/1x2+1/2x3+1/3x4+.....+1/11x12
=1-1/2+1/2-1/3+1/3-1/4+.....+1/11-1/12
=1-1/12
=11/12
1/2+1/6+1/12+1/20········1/132
=1/1*2+1/2*3+1/3*4+……+1/11*12 =1-1/2+1/2-1/3+1/3-1/4+……+1/11-1/12
=1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)……-(1/11-1/11)-1/12
=1-1/12 =11/12
an=1/(n(n+1))
Sn=1-1/2+1/2-1/3+...+(1/n)-(1/(n+1))=n/(n+1)(裂项求和法)
所以S132=132/133