设连续型随机变量X的概率密度为f(x)={ aSinx,0≤x≤π(上一行) 0,其他(大括号后下一行) ,求(1)常数a
(2)期望E(X) (3) 方差D(X) (4)X的分布函数
设连续型随机变量X的概率密度为f(x)={ aSinx,0≤x≤π(上一行) 0,其他(大括号后下一行) ,求(1)常数
答案:1 悬赏:40 手机版
解决时间 2021-08-19 11:35
- 提问者网友:蔚蓝的太阳
- 2021-08-19 05:34
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-08-19 05:58
概率密度必须满足从负无穷到正无穷的积分等于1.
对本题而言,即从0到π对asinx的积分等于1,可以算的a=1/2.
E(X)=从负无穷到正无穷对xf(x)的积分
对本题而言,即从0到π对axsinx的积分,结果为π/2.
E(X^2)=从负无穷到正无穷对(x^2)f(x)的积分
对本题而言,即从0到π对a(x^2)sinx的积分,结果为(π^2)/2 - 2.
D(X)=E(X^2)-E(X)^2=(π^2)/2 - 2 - (π/2)^2=(π^2)/4 - 2
X的分布函数F(x)=从0到x对f(x)的积分.
0 xπ
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯