永发信息网

若函数f(x)=x2+2(a-1)x+2在区间[-x,-4]上,单调递减,则实数A的取值范围?

答案:2  悬赏:60  手机版
解决时间 2021-02-10 14:17
  • 提问者网友:佞臣
  • 2021-02-10 11:14
若函数f(x)=x2+2(a-1)x+2在区间[-x,-4]上,单调递减,则实数A的取值范围?
最佳答案
  • 五星知识达人网友:千夜
  • 2021-02-10 11:38
对称轴是x=1-a在区间[-x,-4]上,单调递减,则1-a≥-4;a≤5======以下答案可供参考======供参考答案1:若你的方程第一个分式是X的平方把f(x)求导,得,f’(X)=2X+2(a-1),因为是单调递减,故f'(x)≤0,解得x≤1-a,因为是在区间[-x,-4]内递减,所以题中给出区间应是解出区间的子区间,所以1-a≥-4,所以a≤5,思路是这样的,至于有没有计算错不知道了
全部回答
  • 1楼网友:千杯敬自由
  • 2021-02-10 12:20
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯