永发信息网

中值定理或命题证明中辅助函数构造的几种思路

答案:2  悬赏:80  手机版
解决时间 2021-02-15 11:21
  • 提问者网友:沉默的哀伤
  • 2021-02-14 15:33
中值定理或命题证明中辅助函数构造的几种思路
最佳答案
  • 五星知识达人网友:三千妖杀
  • 2021-02-14 17:00
前言:在现行人大版教材《微积分》中证明拉格朗日中值定理时,首先构造一个辅助函数,然后验证辅助函数满足罗尔定理的假设条件,最后利用罗尔定理的结论得出拉格朗日定理的证明.我认为关键是弄清楚如何构造这个辅助函数,一旦辅助函数构造出来了,剩下的只是一些验证演算了.下面主要介绍几种构造辅助函数证明拉格朗日中值定理的思路:在教材“中值定理”这一章节中,我们知道,把罗尔定理中的图形饶A点旋转就得到拉格朗日定理中的图形.反过来,我们可以将拉格朗日定理中的图形旋转一个角度,使旋转后得到的弦AB与水平轴(即x轴)平行,就变成了满足罗尔定理条件的图形了.将图形旋转一个角度,若直接利用坐标旋转公式去求出在新坐标系中的曲线方程,是相当困难的.现尝试将原来的函数加一个一次函数,设新函数为:ψ(x)=f(x)+mx+n,显然,它满足罗尔定理的前两个条件,现根据第三个条件ψ(a)=ψ(b)来选取m和n,例如,令ψ(a)=ψ(b)=0,得f(a)+ma+n=0f(b)+mb+n=0得m=-f(b)b--fa(a)n=af(bb)--baf(a)故ψ(x)=f(x)-f(a)b--fa(a)x+af(bb)--baf(a)如果令ψ(a.
全部回答
  • 1楼网友:何以畏孤独
  • 2021-02-14 17:36
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯