永发信息网

定义在R上的函数f(x+2)+f(x)=0,且y=f(x-1)是奇函数,给出下列命题:①函数y=f(x)的最小正周期是2;②函数y=f(x)的图象关于点(-1,0)对

答案:2  悬赏:0  手机版
解决时间 2021-03-17 06:39
  • 提问者网友:伴风望海
  • 2021-03-16 18:29
定义在R上的函数f(x+2)+f(x)=0,且y=f(x-1)是奇函数,给出下列命题:①函数y=f(x)的最小正周期是2;②函数y=f(x)的图象关于点(-1,0)对称;③函数y=f(x)的图象关于y轴对称.其中真命题是________(填入命题的编号).
最佳答案
  • 五星知识达人网友:山君与见山
  • 2020-06-23 11:02
②③解析分析:由f(x+2)+f(x)=0可得f(x+4)=-f(x+2)=f(x),则该函数的周期为T=4,又有函数f(x-1)为奇函数,说明函数f(x)应该有对称中心(-1,0),即f(-2-x)=-f(x)符合点对称的定义从而可求解.解答:由f(x+2)+f(x)=0,即f(x+2)=-f(x)可得f(x+4)=-f(x+2)=f(x),函数f(x)的周期T=4,所以①错;? 又∵函数f(x-1)为奇函数,即函数f(x)向右移一个单位以后关于(0,0)对称,∴平移之前的图象应该关于(-1,0)对称,故②正确;∵f(x+2)=-f(x)且f(x-1)=y为奇函数,∴f(x+2)=-f(x),f(-x-1)=-f(x-1)=-f(x+1),点评:此题考查了函数的周期定义及利用定义求函数的周期,还考查了函数的对称及与图象的平移变换,还考查了复合函数的奇函数的定义式.,通过抽象函数中一些主条件的变形,来考查函数有关性质,方法往往是紧扣性质
全部回答
  • 1楼网友:拾荒鲤
  • 2020-02-10 00:16
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯