永发信息网

谁能说一下高斯的成就

答案:2  悬赏:40  手机版
解决时间 2021-05-08 15:17
  • 提问者网友:动次大次蹦擦擦
  • 2021-05-08 06:26
谁能说一下高斯的成就
最佳答案
  • 五星知识达人网友:人類模型
  • 2021-05-08 07:58
高斯(1777-1855)是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 
 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 
 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 
 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 
 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 
 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂.    摘自网络
全部回答
  • 1楼网友:酒醒三更
  • 2021-05-08 08:07
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。 出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。 19世纪30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。 高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证 高斯明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。 高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯