拉姆塞定理如何用?最好有例题
答案:1 悬赏:20 手机版
解决时间 2021-05-08 15:58
- 提问者网友:末路
- 2021-05-07 15:02
仅限高中内容
最佳答案
- 五星知识达人网友:青尢
- 2021-05-07 16:34
蝴蝶定理 Butterfly theorem 概况: 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。 这里介绍一种较为简便的初等数学证法。 证明:过圆心O作AD与BC的垂线,垂足为S、T,连接OX,OY,OM,SM,MT。 ∵△AMD∽△CMB ∴AM/CM=AD/BC ∵SD=1/2AD,BT=1/2BC ∴AM/CM=AS/CT 又∵∠A=∠C ∴△AMS∽△CMT ∴∠MSX=∠MTY ∵∠OMX=∠OSX=90° ∴∠OMX+∠OSX=180° ∴O,S,X,M四点共圆 同理,O,T,Y,M四点共圆 ∴∠MTY=∠MOY,∠MSX=∠MOX ∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM 这个定理在椭圆中也成立,如图 1,椭圆的长轴A1、A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0)。 (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率; (Ⅱ)直线y=k1x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。 求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4) (Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q。 求证: | OP | = | OQ |。 (证明过程不考虑CH或GD垂直于X轴的情形) 2.解答:北京教育考试院招生考试办公室专家在公布的《2003年全国普通高等学校招生统一考试试题答案汇编》中给出的参考解答如下: (18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力。满分15分。 (Ⅰ)解:椭圆方程为x2/a2+(y-r)2/b2=1 焦点坐标为 (Ⅱ)证明:将直线CD的方程y=kx代入椭圆方程,得b2x2+a2(k1x-r)2=a2b2, 整理,得 (b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0 根据韦达定理,得 x1+x2=2k1a2r/(b2+a2k12), x1·x2=(a2r2-a2b2)/( b2+a2k12), 所以x1x2/(x1+x2)=( r2-b2)/2k1r ① 将直线GH的方程y=k2x代入椭圆方程,同理可得 x3x4/(x3+x4)=( r2-b2)/2k2r ② 由①,②得k1x1x2/(x1+x2)=(r2-b2/2r=k2x3x4/(x3+x4) 所以结论成立。 (Ⅲ)证明:设点P(p,o),点Q(q,o)。 由C,P,H共线,得 (x1-p)/( x4-p)=k1x1/k2x4 解得P=(k1-k2)x1x4/(k1x1-k2x4) 由D,Q,G共线,同理可得 q=(k1-k2)x2x3/(k1x2-k2x3) 由k1x1x2/(x1+x2)=k2x3x4/(x3+x4),变形得: x2x3/(k1x2-k2x3)=x1x4/(k1x1-k2x4) 即:(k1-k2)x2x3/(k1x2-k2x3)=(k1-k2)x1x4/(k1x1-k2x4) 所以 |p|=|q|,即,|OP|=|OQ|。 3.简评 本小题主要考查直线与椭圆等基本知识,考查分析问题和解决问题的能力。试题入门容易,第(Ⅰ)问考查椭圆方程、待定系数法、坐标平移和椭圆性质:焦点坐标、离心率、看图说话即可解决问题,但考查的却都是重点内容。 第(Ⅱ)问是典型的直线与椭圆的位置关系问题。待证式子中含有x1x2,x1+x2,x3x4,x3+x4这样的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯