电子学了出来是干什么的
答案:1 悬赏:60 手机版
解决时间 2021-05-18 14:57
- 提问者网友:留有余香
- 2021-05-18 06:41
电子学了出来是干什么的
最佳答案
- 五星知识达人网友:野味小生
- 2021-05-18 07:55
纳米技术中最重要的一个分支领域是纳米电子学技术(nanoelectronics)。 在信息社会中,电子学的应用显得越来越重要。信息的获取、放大、存储、处理、传输、转换和显示,哪一样都离不开电子学。电子学技术未来的发展,将以“更小,更快,更冷”为目标。“更小”是进一步提高芯片的集成度,“更快”是实现更高的信息运算和处理速度,而“更冷”则是进一步降低芯片的功耗。只有在这三方面都得到同步的发展,电子学技术才能取得新的重大突破。 美国国防高等技术研究厅(DARP),不久前提出的超电子学(ulbe ebotmlllcs)研发计划,就是根据“更小,更快,更冷”的发展目标,要求未来的电子器件要比现有的微电子器件的存储密度高5-100倍,速度快10-100倍,而功耗则要小于现在器件功耗的2倍。最终希望达到“双十二”,即 1012位的存储器容量(1 Terabit)和每秒1012次的运算器速度(1000亿次/s),且廉价而节能。要实现这一目标,电子器件的尺寸将必然进入纳米技术的尺度范围,即要小于100nm。这表明,随着人类对芯片的要求越来越高,在不久的将来,微电子器件必将过渡到纳米电子器件,使其成为21世纪信息时代的核心。 要实现纳米电子器件及其集成电路,有两种可能的方式。 一种是将现有的集成电路进一步向微型化延伸,研究开发更小的最小线宽的加工技术来加工尺寸更小的电子器件。这种方法只是尺度上的缩小,电子器件的构造并不发生根本的改变。现行的微电子器件(如场效应晶体管,field-effect transistor,FET)功耗较大,它无法满足对器件“更冷”的要求。著名的莫尔定律(Moore’s law)预言:“每隔18个月新芯片的晶体管容量要比先前的增加一倍,同时性能也会提升一倍”,事实已经证明,在过去的30多年里,莫尔定律准确地代表着芯片技术的发展趋势。但是,随着集成电路的集成度越来越高,晶体管的尺寸和集成电路的最小线宽越来越小,莫尔定律受到了极大的挑战。因为按照莫尔定律的发展趋势,10年后的2010年微电子器件的尺寸和集成电路的最小线宽都将小于100nm,而目前的光刻技术能够加工的最小线宽为130nm,达到现代微电子学光刻加工技术的极限(物理限制) 另一种方式是研制与当代集成电路完全不同的,利用纳米结构的量子效应而构成的全新量子结构体系,它包括新型的量子器件,如单电子晶体管,单电子存储器,单原子开关等,以及可能用于量子系统的零维的量子点(quantum dot),一维的量子线(quantum wire)和二维量子阱(quantum well)等。 无论采取那一种方式,传统的微米技术都很难再有所作为。扫描隧道显微镜(STM)的发明给纳米电子学带来了福音,这里有必要对其做一简单的介绍: 1982年,国际商业机器公司(International Business Machine, IBM)苏黎世研究所的Gerd Binnig 和Heinrich Rohrer及其同事们成功地研制出世界上第一台新型的表面分析仪器,即扫描隧道显微镜(scanning tunneling microscope STM)。它使人类第一次能够直接观察到物质表面上的单个原子及其排列状态,并能够研究其相关的物理和化学特性。因此,它对表面物理和化学、材料科学、生命科学以及微电子技术等研究领域有着十分重大的意义和广阔的应用前景。STM的发明被国际科学界公认为20世纪80年代世界十大科技成就之一。由于这一成就,Binnig和Rohrer获得了1986年诺贝尔物理奖。 由于STM具有极高的空间分辨能力(平行方向的分辨率为0.04nm,垂直方向的分辨率达到0.01nm),它的出现标志着纳米技术研究的一个最重大的转折,甚至可以说标志着纳米技术研究的正式起步,因为在此之前人类无法直接观察表面上的原子和分子结构,使纳米技术的研究无法深入地进行。 STM的基本原理是量子隧道效应。它利用金属针尖在样品的表面上进行扫描,并根据量子隧道效应来获得样品表面的图像。通常扫描隧道显微镜的针尖与样品表面的距离非常接近(大约为0.5-1.0nm),所以它们之间的电子云互相重叠。当在它们之间施加一偏置电压Vb(Vb通常为2mV-2V)时,电子就可以因量子隧道效应由针尖(或样品)转移
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯