某工厂有旧墙一面长14米,准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房。移植建1米新墙的费用为a元,维修1米旧墙的费用为a/4元,拆去1米旧墙并用此材料重建1米新墙的费用为a/2元。先利用旧墙的一段x米(x小于14)维修后作为矩形厂房的一面边长,剩余的旧墙拆除重建。
(1)计算可由旧墙改造新墙多少米?还需新建心墙多少米.?
(2)问总费用最少需多少?总费用最少时x为多少?
此为高一数学 可用基本不等式一二来解
某工厂有旧墙一面长14米,准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房。移植建1米新墙的费用为a元,维修1米旧墙的费用为a/4元,拆去1米旧墙并用此材料重建1米新墙的费用为a/2元。先利用旧墙的一段x米(x小于14)维修后作为矩形厂房的一面边长,剩余的旧墙拆除重建。
(1)计算可由旧墙改造新墙多少米?还需新建心墙多少米.?
(2)问总费用最少需多少?总费用最少时x为多少?
此为高一数学 可用基本不等式一二来解
(1)可由旧墙改造新墙14-x米,还需新建新墙2*(126/x)+x-(14-x)=252/x+2x-14米
(2)P=ax/4+a(14-x)/2+a(252/x+2x-14)=a(1008/x+7x-28)/4
1008/x+7x>=2*42=84 当且仅当1008/x=7x,即x=12时,等号成立。
此时P=14a