光速是如何测定出来的?
答案:4 悬赏:40 手机版
解决时间 2021-04-04 14:26
- 提问者网友:十年饮冰
- 2021-04-04 03:12
光速是如何测定出来的?
最佳答案
- 五星知识达人网友:夜风逐马
- 2021-04-04 03:41
1、最早的高精度测量光速的方法,齿轮法。
光在特定的光路上,两次通过齿轮的间隙后被观测者看到。这种情况下,只有齿轮的转速是某一些特定的值的时候,光才可以顺利通过两个间隙,而不被挡住。而这个特定的转速,则与光速有关。这样,就把光速的测量,转化成了测量一个齿轮的转速。
2、迈克尔逊的改进实验。
把齿轮换成了一个八面的镜子。镜子不断旋转,只有在转速是特定的值的时候,光才能顺利被反射,进入观测者的眼睛。由于这里,镜子对光路的影响更大,所以测量的精确度可以更高。
3、现代的光路测量往往会使用干涉法。
通过测量特定频率的激光的波长,再用速度=波长*频率,就能算出来速度。这一方法的精度极高。现在,由于米是从光速定义过来的,所以光速的值也就定死了,就是299792458m/s。
扩展资料:
第一个尝试去测量光速的是伽利略。
他和他的助手在夜间相隔数公里远面对面地站着,每人拿一盏灯,灯有开关。首先,第一个人先举起灯,同时记下时间。当第二个人看到第一个人的灯时立即举起自己的灯,也记下时间。从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播1.6km里的时间。
为了减小误差,伽利略反反复复举灯,但当时的他不知道光的传播速度实在是太快了,这种方法最终失败。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。
参考资料:光速-百度百科
光在特定的光路上,两次通过齿轮的间隙后被观测者看到。这种情况下,只有齿轮的转速是某一些特定的值的时候,光才可以顺利通过两个间隙,而不被挡住。而这个特定的转速,则与光速有关。这样,就把光速的测量,转化成了测量一个齿轮的转速。
2、迈克尔逊的改进实验。
把齿轮换成了一个八面的镜子。镜子不断旋转,只有在转速是特定的值的时候,光才能顺利被反射,进入观测者的眼睛。由于这里,镜子对光路的影响更大,所以测量的精确度可以更高。
3、现代的光路测量往往会使用干涉法。
通过测量特定频率的激光的波长,再用速度=波长*频率,就能算出来速度。这一方法的精度极高。现在,由于米是从光速定义过来的,所以光速的值也就定死了,就是299792458m/s。
扩展资料:
第一个尝试去测量光速的是伽利略。
他和他的助手在夜间相隔数公里远面对面地站着,每人拿一盏灯,灯有开关。首先,第一个人先举起灯,同时记下时间。当第二个人看到第一个人的灯时立即举起自己的灯,也记下时间。从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播1.6km里的时间。
为了减小误差,伽利略反反复复举灯,但当时的他不知道光的传播速度实在是太快了,这种方法最终失败。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。
参考资料:光速-百度百科
全部回答
- 1楼网友:旧脸谱
- 2021-04-04 07:06
光速测定的实验室方法(高中课本有)
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出:
v和w是对第三者来说飞船的速度,u是感受的速度,c是光速。
不同介质中的光速
真空中的光速 真空中的光速是一个重要的物理常量,国际公认值为c=299,792,458米/秒。17世纪前人们以为光速为无限大,意大利物理学家G.伽利略曾对此提出怀疑,并试图通过实验来检验,但因过于粗糙而未获成功。1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=303000千米/秒。
1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想用旋转镜法测得光速为c=(298000±500)千米/秒。19世纪中叶J.C.麦克斯韦建立了电磁场理论,他根据电磁波动方程曾指出,电磁波在真空中的传播速度等于静电单位电量与电磁单位电量的比值,只要在实验上分别用这两种单位测量同一电量(或电流),就可算出电磁波的波速。1856年,R.科尔劳施和W.韦伯完成了有关测量,麦克斯韦根据他们的数据计算出电磁波在真空中的波速值为3.1074×105千米/秒,此值与菲佐的结果十分接近,这对人们确认光是电磁波起过很大作用。
1926年,美国物理学家A.A.迈克耳孙改进了傅科的实验,测得c=(299796±4)千米/秒,他于1929年在真空中重做了此实验,测得c=299774千米/秒。后来有人用光开关(克尔盒)代替齿轮转动以改进菲佐的实验,其精度比旋转镜法提高了两个数量级。1952年,英国实验物理学家K.D.费罗姆用微波干涉仪法测量光速,得c=(299792.50±0.10)千米/秒。此值于1957年被推荐为国际推荐值使用,直至1973年。
1972年,美国的K.M.埃文森等人直接测量激光频率ν和真空中的波长λ,按公式c=νλ算得c=(299792458±1.2)米/秒。1975年第15届国际计量大会确认上述光速值作为国际推荐值使用。1983年17届国际计量大会通过了米的新定义,在这定义中光速c=299792458米/秒为规定值,而长度单位米由这个规定值定义。既然真空中的光速已成为定义值,以后就不需对光速进行任何测量了。
介质中的光速 不同介质中有不同的光速值。1850年菲佐用齿轮法测定了光在水中的速度,证明水中光速小于空气中的光速。几乎在同时,傅科用旋转镜法也测量了水中的光速(3/4c),得到了同样结论。这一实验结果与光的波粒二象性相一致而与牛顿的微粒说相矛盾(解释光的折射定律时),这对光的波动本性的确立在历史上曾起过重要作用。1851年,菲佐用干涉法测量了运动介质中的光速,证实了A.-J.菲涅耳的曳引公式。 [玻璃中光速2/3c]
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
上述理论只在19世纪70年代基本准确,在爱因斯坦<<广义相对论>>中,光速是这样阐述的:物体运动接近光速时,时间变得缓慢,当物体运动等于光速时,时间静止,当物体运动超过光速时,时间倒流.这三个推断是19世纪70年代初中期国际天文机构观察探测日食时得以证实,而目前得以证实人类超过光速的机器是俄罗斯时间机器,它可以使当地时间倒退一秒,而耗电量是整个莫斯科市三年的用电量.
E=mc^2推导
第一步:要讨论能量随质量变化,先要从量纲得知思路:
能量量纲[E]=[M]([L]^2)([T]^(-2)),即能量量纲等于质量量纲和长度量纲的平方以及时间量纲的负二次方三者乘积。
我们需要把能量对于质量的函数形式化简到最简,那么就要求能量函数中除了质量,最好只有一个其它的变量。
把([L]^2)([T]^(-2))化简,可以得到只有一个量纲-速度[V_]的形式:
[V_]*[V_]。
也就是[E]=[M][V_]*[V_]
可见我们要讨论质能关系,最简单的途径是从速度v_下手。
----------------------------------------------------
第二步:先要考虑能量的变化
与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。
那么先来考虑做功对于能量变化的影响。
当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加
dE=F_*ds_(*表示点乘)。
考虑最简化的 外力与位移方向相同的情况,上式变成
dE=Fds
----------------------------------------
第三步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢?
我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了:
F_dt=dP_=mdv_
----------------------------------------
第四步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。
参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt
那么可以得到
dE=v_*dP_
如果考虑最简单的形式:当速度改变和动量改变方向相同:
dE=vdP
---------------------------------
第五步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式):
dE=vd(mv)----因为dP=d(mv)
---------------------------------
第六步:把上式按照微分乘法分解
dE=v^2dm+mvdv
这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
---------------------------------
第七步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系):
根据洛仑兹变换推导出的静止质量和运动质量公式:
m=m0[1-(v^2/c^2)]^(-1/2)
化简成整数次幂形式:
m^2=(m0^2)[1-(v^2/c^2)]
化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式):
(m^2)(c^2-v^2)=(m0^2)c^2
用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个):
d[(m^2)(c??-v??)]/dv=d[(m0??)c??]/dv(注意式子等号右边是常数的求导,结果为0)
即
[d(m??)/dv](c??-v??)+m??[d(c??-v??)/dv]=0
即
[m(dm/dv)+m(dm/dv)](c??-v??)+(m??)[0-2v]=0
即
2m(dm/dv)(c??-v??)-2vm??=0
约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过)
得到:
(dm/dv)(c??-V??)-mv=0
即
(dm/dv)(c^2-V^2)=mv
由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0)
(c^2-v^2)dm=mvdv
这就是我们最终得到的dm和dv的直接关系。
--------------------------------------------
第八步:有了dm的函数,代回到我们第六步的能量增量式
dE=v^2dm+mvdv
=v^2dm+(c^2-v^2)dm
=c^2dm
这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
------------------------------------------
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量:
对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到
∫dE=∫[m0~m]c^2dm
即
E=mc^2-m0c^2
这就是 物体从静止到运动速度为v的过程中,总的能量增量。
其中
E0=m0c^2称为物体静止时候的静止能量。
Ev=mc^2称为物体运动时候的总动能(运动总能量)。
总结:对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能。
关于光速
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
同学们知道这个速度相对什么说的吧?是介质,而不关心介质的整体,是以什么速度运动。就是说如果测量系以一定速度运动,则光速是测量系速度加光在介质中的速度,至少低速时近似如此,这一点维护相对论的也不否认。
以声音实验为例:空气对地面静止,第1次我们不动测得我们发出的声音1秒钟前进了300米;第二次我们1秒钟匀速后退1米,测得声音距我们301米,得到结论:两次声音相对地面速度不变,相对我们,第一次300米/秒;第2次301米/秒。
换做光实验,同样结果。我们用玻璃介质再做一次,同样结果,我们再做一个我们不动,让玻璃带着光匀速运动的实验,会发现光对玻璃依然是光速,因为它的传递条件没有任何改变,而对我们,光速改变了,是静止光速+玻璃速度。
要么承认光速可变,要么承认声速也是不变的。
相对论在什么情况下有可能可用呢?
爱因斯坦说:任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”
大学物理中光速不变原理:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
可见,大学教材,已经认为非真空的光速可变,但是这样定义带来另一个问题,相对论,只在真空中可用,在通常的大气条件下,不可用,这又让一些相对论的盲目追随者不知所措。同学们想参与科学探讨是好的,要先丰富一下自己知识。
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出:
v和w是对第三者来说飞船的速度,u是感受的速度,c是光速。
不同介质中的光速
真空中的光速 真空中的光速是一个重要的物理常量,国际公认值为c=299,792,458米/秒。17世纪前人们以为光速为无限大,意大利物理学家G.伽利略曾对此提出怀疑,并试图通过实验来检验,但因过于粗糙而未获成功。1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=303000千米/秒。
1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想用旋转镜法测得光速为c=(298000±500)千米/秒。19世纪中叶J.C.麦克斯韦建立了电磁场理论,他根据电磁波动方程曾指出,电磁波在真空中的传播速度等于静电单位电量与电磁单位电量的比值,只要在实验上分别用这两种单位测量同一电量(或电流),就可算出电磁波的波速。1856年,R.科尔劳施和W.韦伯完成了有关测量,麦克斯韦根据他们的数据计算出电磁波在真空中的波速值为3.1074×105千米/秒,此值与菲佐的结果十分接近,这对人们确认光是电磁波起过很大作用。
1926年,美国物理学家A.A.迈克耳孙改进了傅科的实验,测得c=(299796±4)千米/秒,他于1929年在真空中重做了此实验,测得c=299774千米/秒。后来有人用光开关(克尔盒)代替齿轮转动以改进菲佐的实验,其精度比旋转镜法提高了两个数量级。1952年,英国实验物理学家K.D.费罗姆用微波干涉仪法测量光速,得c=(299792.50±0.10)千米/秒。此值于1957年被推荐为国际推荐值使用,直至1973年。
1972年,美国的K.M.埃文森等人直接测量激光频率ν和真空中的波长λ,按公式c=νλ算得c=(299792458±1.2)米/秒。1975年第15届国际计量大会确认上述光速值作为国际推荐值使用。1983年17届国际计量大会通过了米的新定义,在这定义中光速c=299792458米/秒为规定值,而长度单位米由这个规定值定义。既然真空中的光速已成为定义值,以后就不需对光速进行任何测量了。
介质中的光速 不同介质中有不同的光速值。1850年菲佐用齿轮法测定了光在水中的速度,证明水中光速小于空气中的光速。几乎在同时,傅科用旋转镜法也测量了水中的光速(3/4c),得到了同样结论。这一实验结果与光的波粒二象性相一致而与牛顿的微粒说相矛盾(解释光的折射定律时),这对光的波动本性的确立在历史上曾起过重要作用。1851年,菲佐用干涉法测量了运动介质中的光速,证实了A.-J.菲涅耳的曳引公式。 [玻璃中光速2/3c]
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
上述理论只在19世纪70年代基本准确,在爱因斯坦<<广义相对论>>中,光速是这样阐述的:物体运动接近光速时,时间变得缓慢,当物体运动等于光速时,时间静止,当物体运动超过光速时,时间倒流.这三个推断是19世纪70年代初中期国际天文机构观察探测日食时得以证实,而目前得以证实人类超过光速的机器是俄罗斯时间机器,它可以使当地时间倒退一秒,而耗电量是整个莫斯科市三年的用电量.
E=mc^2推导
第一步:要讨论能量随质量变化,先要从量纲得知思路:
能量量纲[E]=[M]([L]^2)([T]^(-2)),即能量量纲等于质量量纲和长度量纲的平方以及时间量纲的负二次方三者乘积。
我们需要把能量对于质量的函数形式化简到最简,那么就要求能量函数中除了质量,最好只有一个其它的变量。
把([L]^2)([T]^(-2))化简,可以得到只有一个量纲-速度[V_]的形式:
[V_]*[V_]。
也就是[E]=[M][V_]*[V_]
可见我们要讨论质能关系,最简单的途径是从速度v_下手。
----------------------------------------------------
第二步:先要考虑能量的变化
与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。
那么先来考虑做功对于能量变化的影响。
当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加
dE=F_*ds_(*表示点乘)。
考虑最简化的 外力与位移方向相同的情况,上式变成
dE=Fds
----------------------------------------
第三步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢?
我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了:
F_dt=dP_=mdv_
----------------------------------------
第四步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。
参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt
那么可以得到
dE=v_*dP_
如果考虑最简单的形式:当速度改变和动量改变方向相同:
dE=vdP
---------------------------------
第五步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式):
dE=vd(mv)----因为dP=d(mv)
---------------------------------
第六步:把上式按照微分乘法分解
dE=v^2dm+mvdv
这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
---------------------------------
第七步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系):
根据洛仑兹变换推导出的静止质量和运动质量公式:
m=m0[1-(v^2/c^2)]^(-1/2)
化简成整数次幂形式:
m^2=(m0^2)[1-(v^2/c^2)]
化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式):
(m^2)(c^2-v^2)=(m0^2)c^2
用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个):
d[(m^2)(c??-v??)]/dv=d[(m0??)c??]/dv(注意式子等号右边是常数的求导,结果为0)
即
[d(m??)/dv](c??-v??)+m??[d(c??-v??)/dv]=0
即
[m(dm/dv)+m(dm/dv)](c??-v??)+(m??)[0-2v]=0
即
2m(dm/dv)(c??-v??)-2vm??=0
约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过)
得到:
(dm/dv)(c??-V??)-mv=0
即
(dm/dv)(c^2-V^2)=mv
由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0)
(c^2-v^2)dm=mvdv
这就是我们最终得到的dm和dv的直接关系。
--------------------------------------------
第八步:有了dm的函数,代回到我们第六步的能量增量式
dE=v^2dm+mvdv
=v^2dm+(c^2-v^2)dm
=c^2dm
这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
------------------------------------------
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量:
对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到
∫dE=∫[m0~m]c^2dm
即
E=mc^2-m0c^2
这就是 物体从静止到运动速度为v的过程中,总的能量增量。
其中
E0=m0c^2称为物体静止时候的静止能量。
Ev=mc^2称为物体运动时候的总动能(运动总能量)。
总结:对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能。
关于光速
光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s
同学们知道这个速度相对什么说的吧?是介质,而不关心介质的整体,是以什么速度运动。就是说如果测量系以一定速度运动,则光速是测量系速度加光在介质中的速度,至少低速时近似如此,这一点维护相对论的也不否认。
以声音实验为例:空气对地面静止,第1次我们不动测得我们发出的声音1秒钟前进了300米;第二次我们1秒钟匀速后退1米,测得声音距我们301米,得到结论:两次声音相对地面速度不变,相对我们,第一次300米/秒;第2次301米/秒。
换做光实验,同样结果。我们用玻璃介质再做一次,同样结果,我们再做一个我们不动,让玻璃带着光匀速运动的实验,会发现光对玻璃依然是光速,因为它的传递条件没有任何改变,而对我们,光速改变了,是静止光速+玻璃速度。
要么承认光速可变,要么承认声速也是不变的。
相对论在什么情况下有可能可用呢?
爱因斯坦说:任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的。”
大学物理中光速不变原理:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
可见,大学教材,已经认为非真空的光速可变,但是这样定义带来另一个问题,相对论,只在真空中可用,在通常的大气条件下,不可用,这又让一些相对论的盲目追随者不知所措。同学们想参与科学探讨是好的,要先丰富一下自己知识。
- 2楼网友:深街酒徒
- 2021-04-04 06:22
光速的测定在光学的发展史上具有非常特殊而重要的意义。它不仅推动了光学实验,也打破了光速无限的传统观念;在物理学理论研究的发展里程中,它不仅为粒子说和波动说的争论提供了判定的依据,而且最终推动了爱因斯坦相对论理论的发展。
在光速的问题上物理学界曾经产生过争执,开普勒和笛卡尔都认为光的传播不需要时间,是在瞬时进行的。但伽利略认为光速虽然传播得很快,但却是可以测定的。1607年,伽利略进行了最早的测量光速的实验。
伽利略的方法是,让两个人分别站在相距一英里的两座山上,每个人拿一个灯,第一个人先举起灯,当第二个人看到第一个人的灯时立即举起自己的灯,从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播两英里的时间。但由于光速传播的速度实在是太快了,这种方法根本行不通。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。
1676年,丹麦天文学家罗麦第一次提出了有效的光速测量方法。他在观测木星的卫星的隐食周期时发现:在一年的不同时期,它们的周期有所不同;在地球处于太阳和木星之间时的周期与太阳处于地球和木星之间时的周期相差十四五天。他认为这种现象是由于光具有速度造成的,而且他还推断出光跨越地球轨道所需要的时间是22分钟。1676年9月,罗麦预言预计11月9日上午5点25分45秒发生的木卫食将推迟10分钟。巴黎天文台的科学家们怀着将信将疑的态度,观测并最终证实了罗麦的预言。
罗麦的理论没有马上被法国科学院接受,但得到了著名科学家惠更斯的赞同。惠更斯根据他提出的数据和地球的半径第一次计算出了光的传播速度:214000千米/秒。虽然这个数值与目前测得的最精确的数据相差甚远,但他启发了惠更斯对波动说的研究;更重要的是这个结果的错误不在于方法的错误,只是源于罗麦对光跨越地球的时间的错误推测,现代用罗麦的方法经过各种校正后得出的结果是298000千米/秒,很接近于现代实验室所测定的精确数值。
1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,直到1728年,他在坐船时受到风向与船航向的相对关系的启发,认识到光的传播速度与地球公转共同引起了“光行差”的现象。他用地球公转的速度与光速的比例估算出了太阳光到达地球需要8分13秒。这个数值较罗麦法测定的要精确一些。菜德雷测定值证明了罗麦有关光速有限性的说法。
光速的测定,成了十七世纪以来所展开的关于光的本性的争论的重要依据。但是,由于受当时实验环境的局限,科学家们只能以天文方法测定光在真空中的传播速度,还不能解决光受传播介质影响的问题,所以关于这一问题的争论始终悬而未决。
十八世纪,科学界是沉闷的,光学的发展几乎处于停滞的状态。继布莱德雷之后,经过一个多世纪的酝酿,到了十九世纪中期,才出现了新的科学家和新的方法来测量光速。
1849年,法国人菲索第一次在地面上设计实验装置来测定光速。他的方法原理与伽利略的相类似。他将一个点光源放在透镜的焦点处,在透镜与光源之间放一个齿轮,在透镜的另一测较远处依次放置另一个透镜和一个平面镜,平面镜位于第二个透镜的焦点处。点光源发出的光经过齿轮和透镜后变成平行光,平行光经过第二个透镜后又在平面镜上聚于一点,在平面镜上反射后按原路返回。由于齿轮有齿隙和齿,当光通过齿隙时观察者就可以看到返回的光,当光恰好遇到齿时就会被遮住。从开始到返回的光第一次消失的时间就是光往返一次所用的时间,根据齿轮的转速,这个时间不难求出。通过这种方法,菲索测得的光速是315000千米/秒。由于齿轮有一定的宽度,用这种方法很难精确的测出光速。
1850年,法国物理学家傅科改进了菲索的方法,他只用一个透镜、一面旋转的平面镜和一个凹面镜。平行光通过旋转的平面镜汇聚到凹面镜的圆心上,同样用平面镜的转速可以求出时间。傅科用这种方法测出的光速是298000 千米/秒。另外傅科还测出了光在水中的传播速度,通过与光在空气中传播速度的比较,他测出了光由空气中射入水中的折射率。这个实验在微粒说已被波动说推翻之后,又一次对微粒说做出了判决,给光的微粒理论带了最后的冲击。
1928年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。1951年,贝奇斯传德用这种方法测出的光速是299793千米/秒。
光波是电磁波谱中的一小部分,当代人们对电磁波谱中的每一种电磁波都进行了精密的测量。1950年,艾森提出了用空腔共振法来测量光速。这种方法的原理是,微波通过空腔时当它的频率为某一值时发生共振。根据空腔的长度可以求出共振腔的波长,在把共振腔的波长换算成光在真空中的波长,由波长和频率可计算出光速。
当代计算出的最精确的光速都是通过波长和频率求得的。1958年,弗鲁姆求出光速的精确值:299792.5±0.1千米/秒。1972年,埃文森测得了目前真空中光速的最佳数值:299792457.4±0.1米/秒。
光速的测定在光学的研究历程中有着重要的意义。虽然从人们设法测量光速到人们测量出较为精确的光速共经历了三百多年的时间,但在这期间每一点进步都促进了几何光学和物理光学的发展,尤其是在微粒说与波动说的争论中,光速的测定曾给这一场著名的科学争辩提供了非常重要的依据。
在光速的问题上物理学界曾经产生过争执,开普勒和笛卡尔都认为光的传播不需要时间,是在瞬时进行的。但伽利略认为光速虽然传播得很快,但却是可以测定的。1607年,伽利略进行了最早的测量光速的实验。
伽利略的方法是,让两个人分别站在相距一英里的两座山上,每个人拿一个灯,第一个人先举起灯,当第二个人看到第一个人的灯时立即举起自己的灯,从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播两英里的时间。但由于光速传播的速度实在是太快了,这种方法根本行不通。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。
1676年,丹麦天文学家罗麦第一次提出了有效的光速测量方法。他在观测木星的卫星的隐食周期时发现:在一年的不同时期,它们的周期有所不同;在地球处于太阳和木星之间时的周期与太阳处于地球和木星之间时的周期相差十四五天。他认为这种现象是由于光具有速度造成的,而且他还推断出光跨越地球轨道所需要的时间是22分钟。1676年9月,罗麦预言预计11月9日上午5点25分45秒发生的木卫食将推迟10分钟。巴黎天文台的科学家们怀着将信将疑的态度,观测并最终证实了罗麦的预言。
罗麦的理论没有马上被法国科学院接受,但得到了著名科学家惠更斯的赞同。惠更斯根据他提出的数据和地球的半径第一次计算出了光的传播速度:214000千米/秒。虽然这个数值与目前测得的最精确的数据相差甚远,但他启发了惠更斯对波动说的研究;更重要的是这个结果的错误不在于方法的错误,只是源于罗麦对光跨越地球的时间的错误推测,现代用罗麦的方法经过各种校正后得出的结果是298000千米/秒,很接近于现代实验室所测定的精确数值。
1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,直到1728年,他在坐船时受到风向与船航向的相对关系的启发,认识到光的传播速度与地球公转共同引起了“光行差”的现象。他用地球公转的速度与光速的比例估算出了太阳光到达地球需要8分13秒。这个数值较罗麦法测定的要精确一些。菜德雷测定值证明了罗麦有关光速有限性的说法。
光速的测定,成了十七世纪以来所展开的关于光的本性的争论的重要依据。但是,由于受当时实验环境的局限,科学家们只能以天文方法测定光在真空中的传播速度,还不能解决光受传播介质影响的问题,所以关于这一问题的争论始终悬而未决。
十八世纪,科学界是沉闷的,光学的发展几乎处于停滞的状态。继布莱德雷之后,经过一个多世纪的酝酿,到了十九世纪中期,才出现了新的科学家和新的方法来测量光速。
1849年,法国人菲索第一次在地面上设计实验装置来测定光速。他的方法原理与伽利略的相类似。他将一个点光源放在透镜的焦点处,在透镜与光源之间放一个齿轮,在透镜的另一测较远处依次放置另一个透镜和一个平面镜,平面镜位于第二个透镜的焦点处。点光源发出的光经过齿轮和透镜后变成平行光,平行光经过第二个透镜后又在平面镜上聚于一点,在平面镜上反射后按原路返回。由于齿轮有齿隙和齿,当光通过齿隙时观察者就可以看到返回的光,当光恰好遇到齿时就会被遮住。从开始到返回的光第一次消失的时间就是光往返一次所用的时间,根据齿轮的转速,这个时间不难求出。通过这种方法,菲索测得的光速是315000千米/秒。由于齿轮有一定的宽度,用这种方法很难精确的测出光速。
1850年,法国物理学家傅科改进了菲索的方法,他只用一个透镜、一面旋转的平面镜和一个凹面镜。平行光通过旋转的平面镜汇聚到凹面镜的圆心上,同样用平面镜的转速可以求出时间。傅科用这种方法测出的光速是298000 千米/秒。另外傅科还测出了光在水中的传播速度,通过与光在空气中传播速度的比较,他测出了光由空气中射入水中的折射率。这个实验在微粒说已被波动说推翻之后,又一次对微粒说做出了判决,给光的微粒理论带了最后的冲击。
1928年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。1951年,贝奇斯传德用这种方法测出的光速是299793千米/秒。
光波是电磁波谱中的一小部分,当代人们对电磁波谱中的每一种电磁波都进行了精密的测量。1950年,艾森提出了用空腔共振法来测量光速。这种方法的原理是,微波通过空腔时当它的频率为某一值时发生共振。根据空腔的长度可以求出共振腔的波长,在把共振腔的波长换算成光在真空中的波长,由波长和频率可计算出光速。
当代计算出的最精确的光速都是通过波长和频率求得的。1958年,弗鲁姆求出光速的精确值:299792.5±0.1千米/秒。1972年,埃文森测得了目前真空中光速的最佳数值:299792457.4±0.1米/秒。
光速的测定在光学的研究历程中有着重要的意义。虽然从人们设法测量光速到人们测量出较为精确的光速共经历了三百多年的时间,但在这期间每一点进步都促进了几何光学和物理光学的发展,尤其是在微粒说与波动说的争论中,光速的测定曾给这一场著名的科学争辩提供了非常重要的依据。
- 3楼网友:玩世
- 2021-04-04 04:51
第一个尝试测量光速的,也是伽利略。他和他的助手在夜间相隔数公里远面对面地站着,每人拿一盏灯,灯有开关(注意当时还没有电的知识,更没有电灯。)当伽利略在某个时刻打开灯,一束光向助手方向射去,助手看到灯后马上打开自己的灯。伽利略试图测出从他开灯到他看到助手开灯之间的时差,从而算出光速。但这个实验失败了,因为光传播速度太快,现在知道,要想通过这种方法测出光速,必须能测出10-5秒的时差,这在当时是完全不可能的。
第一个比较正确的光速值,是用天体测量得到的。1675年,丹麦天文学家罗麦注意到,木卫消失在木星阴影里的时间间隔逐次不同,它随着各次卫星掩蚀时,木星和地球之间距离的不同而变长或变短。他认识到这是由于在长短不同的路程上,光线传播需要不同时间。根据这种想法,罗麦推算出c=2×108米/秒。
直到1849年,地面实验中才有较好的光速测量。当时,法国物理学家斐索利用高速齿轮进行这项工作。1862年,傅科成功地发展了另一种测定光速的方法,他用一个高速转镜来测量微小的时间间隔。下图是经过改进后的实验装置示意图。转镜是一个正八面的钢质棱镜,从光源S发出的光射到转镜面R上,经R反射后又射到35公里以外的一块反射镜C上,光线再经反射后回到转镜。所用时间是t=2D/c。在t时间中转镜转过一个角度。实验时,逐渐加快转镜转速,当转速达到528转/秒时,在t时间里正好转过1/8圈。返回的光恰恰在棱镜的下一个面上,通过半透镜M可以从望远镜里看到返回光线所成的像。用这种方法得到c=299,796±4公里/秒。
近代测量光速的方法,是先准确地测量一束光的频率v和波长λ,然后再用c=vλ来计算。1973年以来,采用以下的光速值
c=299,792,458±1.2米/秒。
第一个比较正确的光速值,是用天体测量得到的。1675年,丹麦天文学家罗麦注意到,木卫消失在木星阴影里的时间间隔逐次不同,它随着各次卫星掩蚀时,木星和地球之间距离的不同而变长或变短。他认识到这是由于在长短不同的路程上,光线传播需要不同时间。根据这种想法,罗麦推算出c=2×108米/秒。
直到1849年,地面实验中才有较好的光速测量。当时,法国物理学家斐索利用高速齿轮进行这项工作。1862年,傅科成功地发展了另一种测定光速的方法,他用一个高速转镜来测量微小的时间间隔。下图是经过改进后的实验装置示意图。转镜是一个正八面的钢质棱镜,从光源S发出的光射到转镜面R上,经R反射后又射到35公里以外的一块反射镜C上,光线再经反射后回到转镜。所用时间是t=2D/c。在t时间中转镜转过一个角度。实验时,逐渐加快转镜转速,当转速达到528转/秒时,在t时间里正好转过1/8圈。返回的光恰恰在棱镜的下一个面上,通过半透镜M可以从望远镜里看到返回光线所成的像。用这种方法得到c=299,796±4公里/秒。
近代测量光速的方法,是先准确地测量一束光的频率v和波长λ,然后再用c=vλ来计算。1973年以来,采用以下的光速值
c=299,792,458±1.2米/秒。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯