数学归纳法
答案:4 悬赏:60 手机版
解决时间 2021-05-01 22:25
- 提问者网友:轮囘Li巡影
- 2021-05-01 04:11
数学归纳法
最佳答案
- 五星知识达人网友:轻雾山林
- 2021-05-01 05:18
概述 数学上证明与自然数n有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。 [编辑本段]基本步骤 (一)第一数学归纳法:
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法:
对于某个与自然数 有关的命题 ,
(1)验证 n=n0时 P(n);
(2)假设 no<n<k时 P(n)成立,并在此基础上,推出 P(k+1)成立。
综合(1)(2)对一切自然数 n(>n0),命题P(n)都成立;
(三)倒推归纳法(反向归纳法):
(1)对于无穷多个自然数命题 P(n)成立;
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,
综合(1)(2),对一切自然数 n(>n0)
,命题P(n)
都成立;
(四)螺旋式归纳法
P(n),Q(n)为两个与自然数 有关的命题,假如
(1)P(n0)成立;
(2)假设 P(k) (k>n0)成立,能推出Q(k)
成立,假设 Q(k)成立,能推出 P(k+1)成立;
综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立;
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法:
对于某个与自然数 有关的命题 ,
(1)验证 n=n0时 P(n);
(2)假设 no<n<k时 P(n)成立,并在此基础上,推出 P(k+1)成立。
综合(1)(2)对一切自然数 n(>n0),命题P(n)都成立;
(三)倒推归纳法(反向归纳法):
(1)对于无穷多个自然数命题 P(n)成立;
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,
综合(1)(2),对一切自然数 n(>n0)
,命题P(n)
都成立;
(四)螺旋式归纳法
P(n),Q(n)为两个与自然数 有关的命题,假如
(1)P(n0)成立;
(2)假设 P(k) (k>n0)成立,能推出Q(k)
成立,假设 Q(k)成立,能推出 P(k+1)成立;
综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立;
全部回答
- 1楼网友:枭雄戏美人
- 2021-05-01 09:27
数学归纳法
- 2楼网友:未来江山和你
- 2021-05-01 07:52
多写多练多记
- 3楼网友:想偏头吻你
- 2021-05-01 06:17
这里有个ppt 你可以看一下
www.tjcvs.net/yuandi/kj/数学-数学归纳法.ppt
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯