永发信息网

已知函数f(x)=x3+x,关于x的不等式f(mx-2)+f(x)<0在区间[1,2]上有解,则实数m的取值范围为________.

答案:2  悬赏:0  手机版
解决时间 2021-03-22 08:25
  • 提问者网友:贪了杯
  • 2021-03-21 14:22
已知函数f(x)=x3+x,关于x的不等式f(mx-2)+f(x)<0在区间[1,2]上有解,则实数m的取值范围为________.
最佳答案
  • 五星知识达人网友:舍身薄凉客
  • 2021-03-21 15:54
m<1解析分析:先判定函数的奇偶性和单调性,然后根据单调性和奇偶性化简不等式,要使(m+1)x<2在区间[1,2]上有解,只需将x用1和2代入求出m的范围即可.
解答:f(-x)=(-x)3-x=-f(x)
∴函数f(x)是奇函数
f(x)=x3+x,则f'(x)=3x2+1>0
∴函数f(x)在R上单调递增
∵f(mx-2)+f(x)<0
∴f(mx-2)<-f(x)=f(-x)
即mx-2<-x,(m+1)x<2在区间[1,2]上有解
∴m+1<2或(m+1)×2<2即m<1
全部回答
  • 1楼网友:渊鱼
  • 2021-03-21 17:22
我明天再问问老师,叫他解释下这个问题
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯