求过点M(4,1)且和圆C:x²+y²+4y-21=0相切的直线l的方程
求过点M(4,1)且和圆C:x²+y²+4y-21=0相切的直线l的方程
答案:1 悬赏:50 手机版
解决时间 2021-07-29 00:22
- 提问者网友:难遇难求
- 2021-07-28 10:32
最佳答案
- 五星知识达人网友:玩世
- 2021-07-28 10:47
x²+y²+4y-21=0
x²+(y+2)²=25
圆心C(0,-2),半径5
(1)k不存在,x=0
不满足.
(2)k存在,
设直线 y-1=k(x-4)
即 kx-y-4k+1=0
d=|3-4k|/√(k²+1)=5
|3-4k|²=25(k²+1)
9-24k+16k²=25k²+25
9k²+24k+16=0
(3k+4)²=0
k=-4/3
所以直线 4x+3y-19=0
另法,M(4,1)在圆上
所求切线,M是切点
K(CM)=(1+2)/(4-0)=3/4
所以,切线斜率 -4/3
切线为 4x+3y-19=0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯