单选题已知f(x)是偶函数,x?R,若将f(x)的图象向右平移一个单位又得到一个奇函
答案:2 悬赏:0 手机版
解决时间 2021-04-09 21:03
- 提问者网友:趣果有间
- 2021-04-09 03:59
单选题
已知f(x)是偶函数,x ?R,若将f(x)的图象向右平移一个单位又得到一个奇函数,又f(2)=-1,则f(1)+ f(2)+ f(3)+…+ f(2011)= A.-1003 B.1003 C.1 D.-1
最佳答案
- 五星知识达人网友:西风乍起
- 2021-04-09 04:55
D解析解:∵将f(x)的图象向右平移一个单位得到一个奇函数,
即f(x-1)是奇函数,∴f(-x-1)=-f(x-1),
又f(x)是偶函数,∴f(-x-1)=f(x+1),
∴f(x+1))=-f(x-1),
∴f((x-1)+4)=-f((x-1)+2)=f(x-1),可得f(x+4)=f(x),
∴函数f(x)的周期为4,
∵平移前f(x)是偶函数,f(x-1)是奇函数,x∈R,∴f(-1)=f(1)=f(3)=0,
f(0)=-f(-2)=-f(2)=1,
∴f(1)+f(2)+f(3)+…+f(2006)=501(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)=-1,
故选D.
即f(x-1)是奇函数,∴f(-x-1)=-f(x-1),
又f(x)是偶函数,∴f(-x-1)=f(x+1),
∴f(x+1))=-f(x-1),
∴f((x-1)+4)=-f((x-1)+2)=f(x-1),可得f(x+4)=f(x),
∴函数f(x)的周期为4,
∵平移前f(x)是偶函数,f(x-1)是奇函数,x∈R,∴f(-1)=f(1)=f(3)=0,
f(0)=-f(-2)=-f(2)=1,
∴f(1)+f(2)+f(3)+…+f(2006)=501(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)=-1,
故选D.
全部回答
- 1楼网友:西岸风
- 2021-04-09 05:05
收益了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯