永发信息网

设函数f(x)=ax+1/(x+b),(a,b为常数),且方程f(x)=(3/2)x有两个实数根为x1=-1,x2=2

答案:1  悬赏:60  手机版
解决时间 2021-06-08 17:04
  • 提问者网友:容嬷嬷拿针来
  • 2021-06-07 21:46
设函数f(x)=ax+1/(x+b),(a,b为常数),且方程f(x)=(3/2)x有两个实数根为x1=-1,x2=2
(1)求y=f(x)的解析式
(2)证明,曲线y=f(x)的图像是一个中心对称图形,并求对称中心
最佳答案
  • 五星知识达人网友:一把行者刀
  • 2021-06-07 23:04

根据题意:
(1)(3/2)x=ax+1/(x+b),x1=-1和x2=2 分别代入等式得二元一次方程组,求得:
a=1 ,b=-1
则函数解析式为:f(x)=x+1/(x-1);
(2)不难证明函数f(x)=x+1/x的图像为中心对称图形,那么f(x)=x+1/(x-1) 可以写成
f(x)-1=(x-1)+1(x-1),所以,该函数的对称中心为(1,1).
再问: 可以详细点吗??? 呵呵,不好意思奥…… 详细点我采纳你的答案啦……


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯