f(x)=(sinx)^4+(cosx)^2+1/4*sin2x*cos2x,则f(x)
A.最大值为2
B.最小正周期为180°
C.一条对称轴为x=45°
D.一个对称中心为(-180/16,7/8)
f(x)=(sinx)^4+(cosx)^2+1/4*sin2x*cos2x,则f(x)
答案:1 悬赏:10 手机版
解决时间 2021-05-24 22:07
- 提问者网友:孤凫
- 2021-05-24 17:53
最佳答案
- 五星知识达人网友:洒脱疯子
- 2021-05-24 18:17
选D.多次用二倍角公式或逆用二倍角公式.
∵f(x)=(sinx)^4 +(cosx)²+(sin2x·cos2x)/4
=[(1-]²+ (1+ cos2x)/2 + (sin4x)/8
=1/4+ cos²2x /4 - cos2x/2+1/2+ cos2x/2+ (sin4x)/8
=3/4+[(1+ cos4x)/2]/4+ (sin4x)/8
=7/8+ (cos4x)/8+(sin4x)/8
=7/8+(√2/8)sin(4x+π/4)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯