已知z为复数,若关于x的方程x²+zx+4+3i=0有纯虚数根,求z的模的最小值
答案:2 悬赏:60 手机版
解决时间 2021-01-17 15:42
- 提问者网友:战皆罪
- 2021-01-17 09:22
已知z为复数,若关于x的方程x²+zx+4+3i=0有纯虚数根,求z的模的最小值
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-01-17 10:35
z=a+bi
x^2+zx+4+3i=0
x^2+(a+bi)x+4+3i=0
设x(纯虚数根) =ci
(ci)^2+(a+bi)(ci)+4+3i=0
(-c^2-bc+4) + (ac+3)i = 0
=>
-c^2-bc+4 = 0 (1) and
ac+3 =0 (2)
sub (2) into (1)
-(-3/a)^2 -b(-3/a) +4 =0
-9/a^2 + 3b/a +4=0
4a^2 +3ab - 9 =0
b= (9 -4a^2)/(3a)
S= |z|^2
= a^2 +b^2
= a^2 + [(9 -4a^2)/(3a)]^2
=9a^4 + (9-4a^2)^2
= 25a^4 -72a^2 +81
= 25(a^2 - 36/25)^2 + 729/25
min S =729/25
min |z| =√(729/25) =27/5
x^2+zx+4+3i=0
x^2+(a+bi)x+4+3i=0
设x(纯虚数根) =ci
(ci)^2+(a+bi)(ci)+4+3i=0
(-c^2-bc+4) + (ac+3)i = 0
=>
-c^2-bc+4 = 0 (1) and
ac+3 =0 (2)
sub (2) into (1)
-(-3/a)^2 -b(-3/a) +4 =0
-9/a^2 + 3b/a +4=0
4a^2 +3ab - 9 =0
b= (9 -4a^2)/(3a)
S= |z|^2
= a^2 +b^2
= a^2 + [(9 -4a^2)/(3a)]^2
=9a^4 + (9-4a^2)^2
= 25a^4 -72a^2 +81
= 25(a^2 - 36/25)^2 + 729/25
min S =729/25
min |z| =√(729/25) =27/5
全部回答
- 1楼网友:雾月
- 2021-01-17 10:59
希望你能采纳,不懂可追问。谢谢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯