永发信息网

可以化作A(n+2)=pA(n+1)+qAn来解么?要详细步骤,这是我们作业,我给你追加分

答案:2  悬赏:60  手机版
解决时间 2021-11-12 12:08
  • 提问者网友:戎马万世
  • 2021-11-12 06:41
可以化作A(n+2)=pA(n+1)+qAn来解么?要详细步骤,这是我们作业,我给你追加分
最佳答案
  • 五星知识达人网友:拜訪者
  • 2021-11-12 08:01
A(n+2)=(2/3)A(n+1) +(1/3)An
令A(n+2) +p·A(n+1)=q[A(n+1)+p·An]
则 A(n+2)=(q-p)A(n+1) +pq·An
对比条件,得 q-p=2/3,pq=1/3
解得 q=1,p=1/3
即 A(n+2) +(1/3)A(n+1)=A(n+1) +(1/3)An
从而 {A(n+1) +(1/3)An}是公比为1的等比数列,
所以 A(n+1)+(1/3)An=A2+(1/3)A1=7/3
即 A(n+1)=(-1/3)An +7/3
再令 A(n+1) +c=(-1/3)·(An +c)
则 A(n+1)=(-1/3)An -4c/3
所以 -4c/3=7/3,c=-7/4
即 A(n+1) -7/4 =(-1/3)(An -7/4)
所以 {An -7/4}是公比为-1/3的等比数列,
于是 An -7/4=(A1 -7/4)·(-1/3)^(n-1)
从而 An =7/4 -(3/4)·(-1/3)^(n-1)追问“对比条件,得 q-p=2/3,pq=1/3”这一步之后,我算出来两租解,有你算得一组,还有p=-1,q=-1/3

两组都要么?追答一组就行,这是待定系数法,用哪一组都可以。
全部回答
  • 1楼网友:人间朝暮
  • 2021-11-12 08:27
根据 a(n+2) = 2/3 * a(n+1) + 1/3 * a(n) ,左右同时减去a(n+1)可以得到:
[a(n+2) - a(n+1)] = - 1/3 * [a(n+1) - a(n)],
因此 a(n+1) - a(n) 构成了一个系数为 -1/3 的等比数列,而它的第一项是a(2)-a(1)=1。
因此有 a(n)-a(n-1) = (-1/3)^(n-2),a(n-1)-a(n-2) = (-1/3)^(n-3),... ,a(2)-a(1)=1。
这些多项式全部相加,中间项会全部消掉,得到:
a(n) - a(1) = 1 + (-1/3) + (-1/3)^2 + ... + (-1/3)^(n-2)
因此有 a(n) = a(1) + [1 - (-1/3)^(n-1)] / [1 - (-1/3)]
= 7/4 + (1/4) * [(-1/3)^(n-2)]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯