如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A
答案:2 悬赏:40 手机版
解决时间 2021-01-04 03:37
- 提问者网友:回忆在搜索
- 2021-01-03 20:09
如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是________.
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-01-03 21:06
(1,3)解析分析:根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得AB′=B′C′,然后写出点C′的坐标即可.解答:∵A(-2,0),B(-1,0),
∴AO=2,OB=1,
∵△A′B′C′和△ABC关于y轴对称,
∴OB=OB′=1,
∴AB′=AO+OB′=2+1=3,
∵直线y=x+b经过点A,C′,
∴AB′=B′C′=3,
∴点C′的坐标为(1,3).
故
∴AO=2,OB=1,
∵△A′B′C′和△ABC关于y轴对称,
∴OB=OB′=1,
∴AB′=AO+OB′=2+1=3,
∵直线y=x+b经过点A,C′,
∴AB′=B′C′=3,
∴点C′的坐标为(1,3).
故
全部回答
- 1楼网友:空山清雨
- 2021-01-03 22:15
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯