永发信息网

数列极限的夹逼准则求极限lim[1/n^2+1/(n+1)^2+.+1/(n+n)^2] (n→∞) 设Xn=1/n^2

答案:1  悬赏:80  手机版
解决时间 2021-05-22 13:12
  • 提问者网友:骨子里的高雅
  • 2021-05-22 07:45
数列极限的夹逼准则
求极限lim[1/n^2+1/(n+1)^2+.+1/(n+n)^2] (n→∞)
设Xn=1/n^2+1/(n+1)^2+.+1/(n+n)^2
yn=(n+1)/(n+n)^2≤Xn≤(n+1)/n^2=Zn
问:这里yn=(n+1)/(n+n)^2和Zn=(n+1)/n^2是怎么得到的,为什么他们是比Xn小和大的?
最佳答案
  • 五星知识达人网友:逐風
  • 2021-05-22 09:04

把xn的分母全部放大成(n+n)^2,相加得到yn,因为是分母放大,所以整体缩小
把xn的分母全部缩小为n^2,相加得到xn,因为是分母缩小,所以整体放大
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯